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Abstract. We study a stratification, indexed by permutations, of the Picard scheme of a curve
with two marked points, and demonstrate its utility by giving short proofs of dimension bounds
from classical Brill–Noether theory and the recent subject of Hurwitz–Brill–Noether theory. A
line bundle on a curve with two marked points can be special in many ways, as measured by the
global sections of all of its twists by these points. All of this information is conveniently packaged
into a permutation, which we call the transmission permutation. We prove that when twice-marked
curves are chained together, these permutations are composed via the Demazure product; in reverse,
bundles with given permutation can be enumerated via reduced decompositions of a permutation.
The dimension bounds of Hurwitz–Brill–Noether theory are obtained by counting inversions in
extended affine symmetric groups.

1. Introduction

How do you measure how special a line bundle on a curve is? The classical answer is of course
the number that was originally called the index of speciality, h1(C,L); or one might just as well
say h0(C,L), since it carries the same information. Brill–Noether theory bids you take the two
numbers together, since their product is the expected codimension in Pic(C) of equally special line
bundles. Denoting the (projective) dimension of the complete linear series of L by r, this product
is (r + 1)(g − d+ r).

If the curve has a marked point p, finer distinctions are possible. You may ask for the vanishing
orders of L, which measure inflection; this amounts to asking not just for h0(C,L) but a function
f(n) = h0(C,L(−np)). To be fully informed, one may as well allow negative n. This information is
neatly packaged in a combinatorial datum, which is named the Weierstrass partition in [Pfl17b]. A
slick way to form it is to plot all the points

{(
h0 (C,L (−np)) , h1 (C,L (−np))

)
: n ∈ Z

}
in N2; they

form a “staircase path” tracing out a Young diagram, and voilà, a partition. This isn’t just a gimic;
the combinatorics of the partition knows about interesting geometry; its size generalizes the number
(r + 1)(g − d + r) above and tells the expected codimension of equally special bundles, and the
number of set-valued Young tableaux of content {1, · · · , g} tells the algebraic Euler characteristic
of the Brill–Noether variety [CP21, ACT22].

But why stop at one marked point? How should one measure how special a line bundle on a twice-
marked curve (C, p, q) is? One answer is to track two functions h0(C,L(−np)) and h0(C,L(−nq)).
This has been the standard approach going back to the generalized Brill–Noether theorem of [EH86],
and generalizes nicely to three or more marked points. The story is particularly nice for two marked
points, which is the most for which the story behaves well in positive characteristic. In place of a
partition, one can still build a combinatorial datum, a skew tableau. The size of the skew tableaux
tells expected codimension, set-valued tableaux tell the Euler characteristic, and the corners of the
tableaux inform you of the singular locus for general (C, p, q) [COP19, CP21, ACT22, TiB21].

This paper, along with [Pfl25], aims to promote a different, richer combinatorial datum for twice-
marked curves. This datum remembers more: a two-variable function f(a, b) = h0(C,L(ap − bq))
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that knows not just how p, q are inflected, but how they interact. This datum is a permutation
Z → Z, which we dub herein the transmission permutation. Like the Weierstrass partition, this
permutation is not a mere bookkeeping device: its combinatorics knows interesting geometric in-
formation. In place of the number (r + 1)(g − d+ r) or the size of a (skew) tableaux, the number
of inversions of the permutation predicts the codimension of equally special divisors, and reduced
words take the place of tableaux in enumerative questions. We also get a bonus: by consider
permutations in the extended affine symmetric group, we learn not about general points in Mg,2,
but general points in a Hurwitz space (as explained below). Intimately linked to this story is a
curious associative operation on permutations related to tropical matrix multiplication called the
Demazure product.

The aim of this paper is modest: to demonstrate the utility of this construction with a short
unified proof of the existence of Brill–Noether and Hurwitz–Brill–Noether general curves. See also
the partner paper [Pfl21], which develops similar notions in the tropical context.

Remark 1.1. The permutations we use in this paper differ from those used in [Pfl25], in that
increasing, rather than decreasing permutations are the most generic; this is because we describe
h0(C,L(ap−bq)), rather than h0(C,L(−ap−bq)), via permutations. The choice in this paper allows
a cleaner use of the Demazure product, and reflects the fact that, when chaining curves together,
a generic degree g line bundle has no effect, and thus corresponds to multiplying by the identity
permutation.

1.1. Transmission loci. Let (C, p, q) be a twice-marked smooth curve. If L is a line bundle on
C, there is a unique permutation τ = τp,qL : Z → Z characterized by

h0(C,L(ap− bq)) = #{n ≥ b : τ(n) ≤ a}, and(1)

h1(C,L(ap− bq)) = #{n < b : τ(n) > a}, for all a, b ∈ Z.(2)

For example, if τ = ιd−g, where ιd−g(n) = d− g + n for all n ∈ Z, then Equations (1) and (2) say
that every twist L(ap − bq) is nonspecial (either h0 = 0 or h1 = 0). So increasing permutations
correspond to the most generic situation, and inversions in τ signal special divisors.

Note in particular that

#{(m,n) : m < 0 ≤ n, τ(n) ≤ 0 < m} = h0(C,L)h1(C,L) = (r + 1)(g − d+ r)

if h0(C,L) = r + 1, so the expected codimension from classical Brill–Noether theory is a lower
bound on the number of inversions of τ . This permutation is almost-sign-preserving, by which we
mean that it changes the sign of finitely many integers. We denote the group of such permutations
by ASP. The existence of τp,qL is explained in Section 3. This permutation conveniently packages
substantial geometric information about L beyond vanishing orders, including the presence of nodes,
bitangents and other features linking p to q (see [Pfl25, Figure 1]). The degree of L is encoded by
a number that we call the shift of the permutation, and defined by

χα = #{n ≥ 0 : α(n) < 0} −#{n < 0 : α(n) ≥ 0}.

The definition of τp,qL shows that χτp,qL
= χ(C,L(−p)) = d− g, where d is the degree of L and g is

the genus of C.
In the other direction, any τ ∈ ASP defines a subvariety of Picχα+g(C). Define

W τ (C, p, q) =
{
[L] ∈ Picχτ+g(C) : h0(C,L(ap− bq)) ≥ # {n ≥ b : τ(n) ≤ a} for all a, b ∈ Z

}
,

=
{
[L] ∈ Picχτ+g(C) : h1(C,L(ap− bq)) ≥ # {n < b : τ(n) > a} for all a, b ∈ Z

}
.
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We call this the τ -transmission locus. The fact that these two equations are equivalent comes from
Riemann-Roch and Equation (6) below. The formulation via a bound on h1 is better-suited for a
family of curves, as explained in Remark 5.2.

We are particularly interested in extended k-affine permutations.

Definition 1.2. Let k = 0 or k ≥ 2 be an integer. Denote by Σ̃k the group of permutations

α ∈ ASP such that α(n+k) = α(n)+k for all n ∈ Z. In particular, Σ̃0 = ASP (this notation differs
slightly from that of [Pfl21]). For k ≥ 2, these are called the extended affine symmetric groups.

The word “extended” is present because when k ≥ 2 the “affine symmetric group” is the subgroup

of permutations such that
∑k−1

n=0(α(n)− n) = 0, or equivalently χα = 0.
We call a twice-marked curve (C, p, q) k-torsion if kp ∼ kq as divisors, and say that k is the

torsion order if it generates {n ∈ Z : np ∼ nq}. The definition of τp,qL shows that if (C, p, q)

is k-torsion, τp,qL ∈ Σ̃k for all L. The converse is also true; if τp,qOC
∈ Σ̃k, then it follows that

h0(C,OC) = h0(C,OC(kp− kq)) = 1, so kp ∼ kq.
An inversion of α is a pair (m,n) such that m < n and α(m) > α(n), and two inversions

(m,n), (m′, n′) are called k-equivalent if m′ − m = n′ − n ≡ 0 (mod k). The complexity of such
permutations is measured by invk(α), the number of k-equivalence classes of inversions; inv0(α)
is simply the number of inversions. Note that “extended 0-affine” and “0-torsion” are vacuous
conditions, but we allow them to state results in a uniform way.

Studying these transmission loci provide a route to studying the classical Brill–Noether varieties,
as well as the more recently studied splitting loci of Hurwitz–Brill–Noether theory. In particular,

(1) Given g, r, d, there is a permuation γrd−g such that, for C a genus g curve, the Brill–Noether

locus W r
d (C) is equal to W γr

d−g(C, p, q), regardless of p, q. The number of inversions of γrd−g

is (r + 1)(g − d+ r), the expected codimension of W r
d (C).

(2) Given any k ≥ 2 and splitting type e⃗ ∈ Zk, there is a permutation γe⃗ such that for any
(C, p, q) with kp ∼ kq, the splitting locus W e⃗(C, kp) is equal to W γe⃗(C, p, q). The number
of inversions of γe⃗ is equal to u(e⃗), the expected codimension of W e⃗(C, kp).

See Section 6 for terminology and the precise statements. The construction of these permutations
is not novel; γe⃗ appears in slightly different form in [LLV25, Theorem 1.4], for example. The novelty
in the present paper is placing them in the context of transmission loci, and offering the Demazure
product as a useful device for inductive arguments.

1.2. The Demazure product. The fundamental tool in our argument is the Demazure product
on ASP. This is an associative product ⋆ with several nice characterizations, whose properties are
developed in detail in [Pfl22] and summarized in Section 2 here. Briefly, α ⋆ β can be obtained
by decreasing α, β in Bruhat order until a “reduced product” is obtained, and then multiplying
them; it is also characterized by a type of matrix multiplication over the min-plus semiring. The
fundamental observation on which this entire paper turns is that, if (C1, p1, q1), (C2, p2, q2) are two
twice-marked chains (or smooth curves), and q1 is glued to p2 to form (X, p1, q2), then for any line
bundle L on X restricting to L1,L2 on C1, C2,

(3) τp1,q2L = τp1,q1L1
⋆ τp2,q2L2

.

This is proved in Corollary 3.6. In reverse, transmission loci W τ (X, p1, q2) may be decomposed
into a union of products Wα(C1, p1, q1) × W β(C2, p2, q2), where the union is taken over reduced
products αβ = τ . This is proved in Proposition 3.7. What this means for our analysis is that
transmission permutations are extremely well-suited to inductive arguments in which curves are
repeatedly split into two curves joined at a node. They share this feature with limit linear series,
and for this reason elliptic chains serve as a natural endpoint for degeneration, just as they do in
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many applications of limit linear series. If nothing else, my hope in writing this paper is to make
the case that the Demazure product is the most natural underlying combinatorial mechanism to
understand why elliptic chains have been so successful in Brill–Noether theory.

1.3. Results. We are concerned in this paper with the following genericity condition. In light of
the discussion above, this notion implies classical Brill–Noether generality (k = 0) and Hurwitz–
Brill–Noether generality (k ≥ 2). In both cases, “generality” refers only to loci having the expected
dimension, and not to smoothness or stronger conditions.

Definition 1.3. Let k = 0 or k ≥ 2, and let (C, p, q) be a twice-marked curve or chain. We say
that (C, p, q) has k-general transmission if

(1) Every transmission permutation τp,qL on (C, p, q) is in Σ̃k; and

(2) For all τ ∈ Σ̃k, any component of W τ (C, p, q) has codimension at least invk(τ).

In particular, if invk(τ) > g, including the possibility that invk(τ) = ∞, then W τ (C, p, q) is empty.

We conjecture (Conjecture 7.1) that in fact on any (C, p, q) with kp ∼ kq, every component
of W τ (C, p, q) has codimension at most invk(α). The is true for the permutations γrd−g and γe⃗
mentioned above by degeneracy locus arguments [Kem71, KL72, KL74] and Larson’s theory of
splitting loci [Lar21b, Lar21a], respectively. If correct, this definition could be changed to say that
W τ (C, p, q) is equidimensional of codimension invk(τ) when invk(τ) ≤ g. See Section 7 for some
discussion and further conjectures.

Our main result is the following. Here, Mg,2 denotes the moduli stack of twice-marked smooth
curves, and Hg,k,2 denotes the substack of (C, p, q) such that kp ∼ kq, or alternatively the space of
degree-k covers π : C → P1 with two marked points of total ramification.

Theorem 1.4. A very general twice-marked curve (C, p, q) in Mg,2 has 0-general transmission,
and such curves are Brill–Noether general; for all k ≥ 2 a very general point in some component
of Hg,k,2 has k-general transmission, and such curves are Hurwitz–Brill–Noether general.

The phrase “some component of” above is necessary becuase, in characteristic p, Hg,k,2 may be
reducible. In characteristic 0 this phrase is not needed. The k = 0 case of this theorem follows from
[Pfl25, Theorem 1.12], which also gives an existence and smoothness statement, and uses somewhat
different methods. I do not know if the “versality of flags” point of view in that paper can be
adapted to the k ≥ 2 situation.

We will consider certain degenerations, namely to chains of twice-marked curves. For our pur-
poses, a twice-marked chain is a twice-marked nodal curve (X, p1, qℓ) obtained from ℓ twice-marked
smooth curves (Ci, pi, qi), 1 ≤ i ≤ ℓ, by gluing qi to pi+1 for 1 ≤ i < ℓ. In particular, whenever we
say “twice-marked chain,” we will always assume that the marked points are at opposite ends of
the chain. We allow ℓ = 1, so that “twice-marked chains” include “twice-marked smooth curves.”
We will extend the definition of transmission permutations from smooth curves to such chains in
Section 3. With this terminology in place, we will prove:

(1) In a family of twice-marked chains (possibly including smooth curves), the function (C, p, q) 7→
dimW τ (C, p, q) is upper semicontinuous (Theorem 5.1).

(2) A genus-1 curve has k-general transmission if and only if the marked points differ by torsion
of order exactly k (Theorem 4.1).

(3) General transmission is “chainable:” A twice-marked chain has k-general transmission if
and only if every component in the chain has k-general transmission (Theorem 3.9).

In particular, these results together imply Theorem 1.4, by considering elliptic chains with torsion
order k on all components. We must say “very general” in that theorem since countably many
permutations τ must be considered.
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Conventions

We work over an algebraically closed field F of any characteristic. By curve we always mean a
connected proper nodal curve. A twice-marked curve is a curve with two distinct marked smooth
points, and a twice-marked chain is always assumed to have its marked points at opposite ends of
the chain.

The symbol N denote nonnegative numbers. The symbol δ always denotes an indicator function,
equal to 1 if the statement within is true, and 0 otherwise. A permutation always refers to a
permutation of Z.

2. The Demazure product on ASP

This section summarizes material about the Demazure product on ASP. This content is explained
in detail in [Pfl22], and much of it is standard material for Coxeter groups.

The Demazure product on ASP may be defined via the functions

sα(a, b) = #{n ≥ b : α(n) < a}
associated to permutations α ∈ ASP. These are called (submodular) slipface functions in [Pfl22],
and are closely related to rank functions on finite symmetric groups. The Demazure product is
uniquely characterized by the “min-plus matrix multiplication” equation

(4) sα⋆β(a, b) = min
ℓ∈Z

{sα(a, ℓ) + sβ(ℓ, b)} .

This equation undoubtedly appears strange at first; I suggest the reader “try it out” by checking
the special case: if α, β−1 have no inversions in common, then α⋆β = αβ (the converse also holds);
this is easiest to understand when β is a simple transposition.

We will require a criterion for obtaining a permutation from a slipface function.

Corollary 2.1 ([Pfl22, Proposition 7.12]). Let s : Z2 → N be a function. Suppose that

(1) There exists integers M,χ such that a− b ≤ −M implies s(a, b) = 0 and a− b ≥ M implies
s(a, b) = χ+ a− b; and

(2) For all a, b ∈ Z, s(a+ 1, b)− s(a, b)− s(a+ 1, b+ 1) + s(a, b+ 1) ≥ 0 (s is submodular).

Then there exists a unique permutation α ∈ ASP such that s(a, b) = sα(a, b). The shift of α is the
the number χ mentioned in criterion (1). This permutation has bounded difference, meaning that
|α(n)− n| is bounded for n ∈ Z.

The functions sα also define the Bruhat order on ASP: α ≤ β means sα(a, b) ≤ sβ(a, b) for all
a, b ∈ Z. We will almost never use Bruhat order to compare permutations with different shifts.
Bruhat order provides a second, perhaps more intuitive definition of the Demazure product: it is
the Bruhat-maximum of all ordinary products of Bruhat-smaller permutations:

(5) α ⋆ β = max{α1β1 : α1 ≤ α, β1 ≤ β}.
The shift of a permutation α ∈ ASP determines the asymptotic behavior of sα. This is revealed by
the following identity.

(6) sα(a, b)− sα−1(b, a) = χα + a− b

In particular, if χα = χβ then α ≤ β if and only if α−1 ≤ β−1.
The shift map α 7→ χα is a homomorphism for both ⋆ and ordinary multiplication.

(7) χα⋆β = χαβ = χα + χβ

A crucial step in our argument will consist of reducing Demazure products to ordinary products.
This step is provided by the following “reduction theorem” from [Pfl22].
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Definition 2.2. A tuple (α1, · · · , αℓ) is called reduced if Inv(α1 · · ·αℓ) is equal to the disjoint union

of the sets
{(

(αn+1 · · ·αℓ)
−1(u), (αn+1 · · ·αℓ)

−1 (v)
)
: (u, v) ∈ Inv(αn)

}
for 1 ≤ n ≤ ℓ.

Theorem 2.3. Let α1, · · · , αℓ, γ ∈ Σ̃k, and suppose α1 ⋆ · · · ⋆ αℓ ≥ γ and
∑

χαn = χγ. Then

there exists a reduced ℓ-tuple (β1, · · · , βℓ) in Σ̃k such that χβi
= χαi and βi ≤ αi for all i, and

β1 ⋆ · · · ⋆ βℓ = β1 · · ·βℓ = γ. In particular,
∑ℓ

i=1 invk(βi) = invk(γ).

3. Transmission permutations on smooth curves and chains

Let (C, p, q) be a twice-marked smooth curve of genus g, and L be a degree d line bundle on C.
Define the transmission function sp,qL by

sp,qL (a, b) = h0
(
C,L

(
(a− 1) p− bq

))
.

We write a−1 rather than a in this definition because it is a necessary (though headache-inducing!)
correction to ensure that transmission permutations are combined using the Demazure product.
Let χ = d−g. Riemann-Roch implies that sp,qL satisfies Criterion (1) of Corollary 2.1, and Criterion

(2) follows from the observation that, letting Va,b = H0
(
C,L

(
(a − 1)p − bq

))
and regarding all

these as subspaces of H0(C\{p, q},L),
sp,qL (a+ 1, b)− sp,qL (a, b)− sp,qL (a+ 1, b+ 1) + sp,qL (a, b) = dimVa+1,b/ (Va,b + Va+1,b+1) ≥ 0.

Furthermore, Equation (6) and Riemann-Roch imply sτ−1(b, a) = h1
(
C,L

(
(a−1)p−bq

))
, hence

Lemma 3.1. For any twice-marked smooth curve (C, p, q) and line bundle L, there exists a per-
mutation τ = τp,qL satisfying sp,qL = sτ and sq,pωC(p+q)⊗L∨ = sτ−1, and therefore Equations (1), (2).

Remark 3.2. If ιn denotes the shift permutation ιn(m) = m− n, then χιn = n, and

sιnα(a, b) = sα(a+ n, b)

for all a, b ∈ Z, so ιnτ
p,q
L = τp,qL(np) for all line bundles L, and W τ (C, p, q) ∼= W ιnτ (C, p, q) for all

permutations τ , via the “twist by np” map. This is a convenient way to reduce certain statements
to the shift 0, or alternatively to the degree 0, case.

3.1. Chains of twice-marked curves. We now extend our definition of transmission loci to
certain nodal curves, namely twice-marked chains. We work with chains for simplicity, but similar
definitions can be made for curves of compact type, and the reader familiar with the theory of
enriched structures will see that these definitions naturally extend to that context as well. The
primary catch is that it may not be the case that all transmission functions are submodular, so
transmission permutations may not exist, in these more general settings. This is related to the fact
that in the tropical context [Pfl21], transmission functions are not submodular in general.

Fix a single twice-marked chain (X, p1, qℓ) obtained by joining (C1, p1, q1), · · · , (Cℓ, pℓ, qℓ). For
each node qi ∈ {q1, · · · qℓ−1}, there is a line bundle (unique up to isomorphism) Yi such that

Yi |Ci
∼= OCi(−qi), Yi |Ci+1

∼= OCi+1(pi+1) and Yi |Cj
∼= OCj for all j ̸= i, i+ 1.

For any n⃗ ∈ Zℓ−1, define Y(n⃗) =
⊗ℓ−1

i=1 Y
⊗ni
i . Denote by Picd,p1(X) is the component of the Picard

scheme parameterizing line bundles of degree d on C1 and 0 on C2, · · · , Cℓ.

Definition 3.3. The transmission function sp1,qℓL : Z2 → N of a line bundle L on X is

sp1,qℓL (a, b) = min
n⃗∈Zℓ−1

h0(X,L((a− 1)p− bq)⊗ Y(n⃗)).



TRANSMISSION PERMUTATIONS AND DEMAZURE PRODUCTS IN HURWITZ–BRILL–NOETHER THEORY 7

For any τ ∈ ASP, let d = χτ + g and define the transmission locus W τ (X, p1, qℓ) to be

W τ (X, p1, qℓ) =
{
[L] ∈ Picd,p1(X) : sp1,qℓL (a, b) ≥ sτ (a, b) for all a, b ∈ Z

}
.

Note by Equation (6) and Riemann-Roch, this bound on h0(X,L(ap− bq)⊗Y(n⃗)) is equivalent
to bounding h1(X,L(ap− bq)⊗ Y(n⃗)) by sτ−1(b, a+ 1).

To carry out our analysis, we require an alternative form for sp1,qℓL stated purely in terms of the
individual line bundles. To obtain it, we require a basic lemma about line bundles on nodal curves.
The reader who is frustrated with the insidious “−1”s that creep into many of our definition (such
as that of sp1,qℓL above) may direct their frustration at this lemma, where these goblins originate.

Lemma 3.4. Let X be a nodal curve, with a node p that separates it into two nodal curves X1, X2.
Let L be a line bundle on X, with L1,L2 the restrictions to X1, X2. For n ∈ Z, let Y(n) be a line
bundle on X with Y(n) |X1

∼= OX1(−np) and Y(n) |X2
∼= OX2(np). Then

min
n∈Z

{
h0(X,L ⊗ Y(n))

}
= min

n∈Z

{
h0(X1,L1(−np)) + h0(X2,L2((n− 1)p))

}
.

Proof. This follows from the claim: for any line bundle L on X,

h0(X,L) = min
{
h0(X1,L1) + h0(X2,L2(−p)), h0(X1,L1(−p)) + h0(X2,L2)

}
.

To prove this claim, consider the exact sequence 0 → L → L1 ⊕ L2 → L |p→ 0 of sheaves on X.
The last term is of course isomorphic to Op. Taking global sections, it follows that

h0(X,L) = h0(X1,L1) + h0(X2,L2)− δ,

where δ is 0 if both L1,L2 have a base point at p, and 1 otherwise. In other words, δ =

max{h0(X1,L1) − h0(X1,L1(−p)), h0(X2,L2) − h0(X2,L2(−p))
}
; the claim and the lemma fol-

low. □

By induction on ℓ, we can reduce sp1,qℓL to transmission functions of the components as follows.

Corollary 3.5. Let L be a line bundle on the chain (X, p1, qℓ), and denote by Li the restriction to
Ci. For all n0, nℓ ∈ Z,

sp1,qℓL (n0, nℓ) = min
n1,··· ,nℓ−1∈Z

{
ℓ∑

i=1

spi,qiLi
(ni−1, ni)

}
.

In light of Lemma 3.1 and the existence and definition of the Demazure product (in this case, an
iterated Demazure product), this shows that chains don’t just have transmission functions; they too
have transmission permutations, and attachment at a node corresponds to the Demazure product.

Corollary 3.6. For any degree-d line bundle L on the chain (X, p1, qℓ), there exists a permutation
τ = τp1,qℓL of shift χτ = d− g such that sp1,qℓL = sτ . This permutation is given by

τp1,qℓL = τp1,q1L1
⋆ τp2,q2L2

⋆ · · · ⋆ τpℓ,qℓLℓ
.

Proposition 3.7. Let τ ∈ Σ̃k, let (X, p1, qℓ) be a twice-marked chain as above, and let d = χτ + g,

where g is the genus of X. Let W be the set of reduced tuples (α1, · · · , αℓ) in Σ̃k that satisfy
χα1 = χτ and χαi = 0 for 2 ≤ i ≤ ℓ, and such that α1α2 · · ·αℓ = τ . Identify Picd,p1(X) with

Picd(C1)× Pic0(C2)× · · · × Pic0(Cℓ). Then

W τ (X, p1, qℓ) =
⋃
W

ℓ∏
i=1

Wαi(Ci, pi, qi).
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Proof. A bundle [L] ∈ Picd,p1(X) lies in W τ (X, p1, qℓ) if and only if τp1,q1L1
⋆ τp2,q2L2

⋆ · · · ⋆ τpℓ,qℓLℓ
≥ τ in

Bruhat order. By assumption on L, the shifts of these permutations are χτ , 0, · · · , 0, respectively.
By Theorem 2.3, this occurs if and only if there exists a reduced product α1 · · ·αℓ = τ with the

same shifts and αi ≤ τpi,qiLi
for all i. These inequalities are equivalent to [L] ∈

∏ℓ
i=1W

αi(Ci, pi, qi).

So W τ (X, p1, qℓ) is equal to the union of all such products for α1, · · · , αℓ chosen from the set W . □

Example 3.8. Suppose that invk(τ) = g, and X is a chain of k-torsion twice-marked genus 1
curves. For simplicity assume χτ = 0 (by Remark 3.2, this does not really limit anything). It will
follow from the analysis in Section 4 that every (α1, · · · , αℓ) ∈ W has invk(αn) = 1 for all n, so in
fact W consists of the set of reduced words for τ in the affine symmetric group, and we obtain a
bijection between the points of W τ (X, p1, qg) and reduced words.

Theorem 3.9. A twice-marked chain of k-torsion curves has k-general transmission if and only if
each curve in the chain has k-general transmission.

Proof. Suppose each (Ci, pi, qi) has k-general transmission. Then for every choice of line bundles

Li on Ci, τ
pi,qi
Li

∈ Σ̃k for all i, so Corollary 3.6 implies that τp1,qℓ(L) ∈ Σ̃k as well, since Σ̃k is

closed under ⋆. We now consider the dimension bound. For every τ ∈ Σ̃k, every element of W has

invk τ =
∑ℓ

i=1 invk αi, so every element of the union in that Proposition has codimension at least
invk τ . It follows that (X, p1, qℓ) has k-general transmission.

Conversely, suppose that the chain (X, p1, qℓ) has k-general transmission. To tame an illegible
nest of subscripts in our notation, define sn = sτpn,qn

OCn

for n = 1, · · · , ℓ. We claim that each twice-

marked curve (Cn, pn, qn) has k-torsion, or equivalently that sn(k+1, k) ≥ 1. To see this, note that
τp1,qℓOX

is the Demazure product of all τpi,qiOCi
. Since the chain as a whole has k-general transmission,

we have s1 ⋆ · · · ⋆ sℓ(k + 1, k) ≥ 1. It follows that for each n,

n−1∑
i=1

si(k + 1, k + 1) + sn(k + 1, k) +
ℓ∑

i=n+1

si(k, k) ≥ 1.

For all i, si(k+1, k+1) = si(k, k) = 0, since these are dimensions of spaces of sections of negative-
degree line bundles. It follows that sn(k + 1, k) = h0(Cn,OCn(kpn − kqn)) ≥ 1, which proves the

claim. There all transmission permutations on all components (Cn, pn, qn) lie in Σ̃k.
We must now verify the codimension bound on each component. Let τ be any shift-0 permutation,

and let 1 ≤ n ≤ ℓ. Decompose W τ (X, p1, qℓ) as in Proposition 3.7 and define a tuple (α1, · · · , αℓ) by
αn = τ and αi = ι0 (the identity) otherwise. This tuple is an element of set W , and Wαi(Ci, pi, qi)

is all of Pic0(Ci) if i ̸= n, and W τ (Cn, pn, qn) when i = n. So
∏ℓ

i=1W
αi(Ci, pi, qi) has the same

codimension in Pic0,p1(X) as W τ (Cn, pn, qn) does in Pic0(Cn), which is therefore at least invk(τ).
By Remark 3.2, this implies that the same holds for all τ of any shift. So all (Cn, pn, qn) have
k-general transmission. □

4. The genus 1 case

The story of transmission permutations is particularly simple in genus 1, which makes it an
excellent base case. This section proves

Theorem 4.1. A genus-1 twice-marked curve (E, p, q) has k-general transmission if and only if it
has torsion order k.

Fix the following notation. For k = 0 or k ≥ 2 and any integer m, let σk
m be the permutation

exchanging n and n+1 for all n ≡ m (mod k), and fixing all other integers. Define ιm as in Remark
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3.2. It will be useful to have a formula for the following function.

(8) sιnσk
m
(a, b) = max(a− b+ n, 0) + δ

[
a+ n = b ≡ m+ 1 (mod k)

]
.

We use the following fact without proof: for any α ∈ Σ̃k, invk α = 0 if and only if α = ιn for
some n, and invk α = 1 if and only if α = ιnσ

k
m for some n,m.

Lemma 4.2. Suppose (E, p, q) is a genus 1 twice-marked curve with torsion order k, and let L be
a degree d line bundle on E.

(1) If there exists m ∈ Z such that L ∼= OE(mq + (d−m)p), then τp,qL = ιd−1σ
k
m−1.

(2) If no such m exists, then τp,qL = ιd−1.

Proof. Riemann-Roch implies that the only special line bundle on a genus 1 curve is OE . Therefore
if L is not isomorphic to OE(mq+(d−m)p) any integer m, then sp,qL = sιd−1

. This proves part (2).
Now assume L ∼= OE(mq + (d −m)p) for some m. Then L(ap − bq) is special if and only if it

has degree 0 and b ≡ m (mod k), and it has h0 = h1 = 1 in that case. Therefore

sp,qL (a, b) = max{d− 1 + a− b, 0}+ δ (b ≡ m (mod k) and a = b− d+ 1) .

By Equation (8), this is sιd−1σ
k
m−1

(a, b). □

Proof of theorem 4.1. If (E, p, q) is genus 1 and has torsion order k, then Lemma 4.2 shows that

W ιn(E, p, q) = Picn+1(E), W ιnσk
m(E, p, q) is a single point, and Wα(E, p, q) is empty for any other

α ∈ Σ̃k. So (E, p, q) has k-general transmission.
On the other hand, for any k′ ̸= k, the fact that σk

0 occurs as a transmission permutation on

(Γ, v, w) implies that (Γ, v, w) does not have k′-general transmission: either k ∤ k′ and σk
0 ̸∈ Σ̃k, or

k | k′, and invk′ σ
k
0 = k′/k ≥ 2, but W σk

0 (E, p, q) has codimension 1. □

5. Relative transmission loci

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let Cg,2 denote the locus in Mg,2 of twice-marked chains, including twice-marked
smooth curves. Then (X, p, q) 7→ dimW τ (X, p, q) is an upper semicontinuous function on Cg,2.

To do so, we formulate a relative version of transmission loci, defined for versal deformations. For
simplicity, we have not attempted to define relative transmission loci for more general families, and
instead freely make assumptions that will simplify the exposition and be sufficient for our purposes.
We freely use various standard facts about deformation theory of nodal curves with marked points;
a nice summary of what is needed, with references, can be found in [LO19, p. 20-21].

5.1. Versal deformation of a chain. Begin with a single twice-marked chain (X0, p0, q0) of genus
g. We will consider a versal deformation of (X0, p0, q0), i.e. a smooth morphism from a base scheme
B, which we assume smooth and irreducible, to the stack Mg,2. Note that here, the subscript 0
refers to a deformation parameter, rather than indexing components in the chain. This amounts
to a flat proper morphism π : X → B with two sections p, q : B → X. We denote the members of
this family by (Xb, pb, qb) for geometric points b ∈ B. Since the universal curve is a smooth stack,
the total space X is smooth. The morphism π is not smooth, of course, but after shrinking B if
necessary we can identify that non-smooth locus as a disjoint union of ℓ codimension-2 subschemes
Z1, · · ·Zℓ−1, corresponding to the nodes of X0. In each member (Xb, pb, qb) of the family, the
components Zi meeting Xb are in bijection with the nodes of Xb, which can each be viewed as a
node of X0 that has not been smoothed as X0 deforms to Xb. The images π(Zi) are locally principal
subschemes in B; shrinking B if necessary we assume that they are principal. Each π−1(π(Zi))
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Z2

Z1

p

q

Y ′
1

Y ′
2

X0

π

π(Z2)π(Z1)
0

Y1

Y2

Figure 1. A versal deformation of a chain, and the divisors Yi, Y
′
i .

is a principal divisor in X, which can be decomposed into a union of two divisors Yi, Y
′
i meeting

transversely at Zi; we take Yi to be the “upper half,” so that for each b ∈ π(Zi), Cb ∩ Yi contains
pb, while Y ′

i is the “lower half” containing qb for all such b. See Figure 1.
The divisors Yi, Y

′
i explain why transmission loci were defined the way that they were for chains.

Two line bundles L,L′ on the family X agree on the smooth members if one is obtained from the
others via twisting by these divisors. So it is reasonable to require our dimension bounds hold for
all such twists when working in this family. Now, the line bundles O(Yi) restrict to the family
members meeting Zi (i.e. where the ith node has not been smoothed) as follows.

(9) OX(Yi) |Yi
∼= OYi(−Zi), and OX(Yi) |Y ′

i

∼= OY ′
i
(Zi).

The assumption that π(Zi) is principal means that OX(Y ′
i )

∼= OX(−Yi).

5.2. Relative transmission loci. This suggests that we ought to define a relative transmission

locus for this family as follows. For an (ℓ − 1)-tuple n⃗ ∈ Zℓ−1, let Y(n⃗) = OX(
∑ℓ−1

i=1 niYi). Fix a

permutation τ ∈ ASP and let d = χτ + g. Denote by Picd,p(π) → B the relative Picard scheme of
line bundles having degree d on the component of each fiber containing pb and degree 0 on every
other component (as in [LO19, Notation 3.2.4]), and let ρ : X ×B Picd,p(π) → Picd,p(π) be the
projection. Let U be a Poincaré line bundle on X ×B Picd,p(π). The points of Picd,p(π) are pairs
(b, [L]) of a point b ∈ B and a (isomorphism class of a) line bundle L on Xb of the prescribed
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multidegree. Define a subscheme of Picd,p(π) as follows.

W τ (π, p, q) =
{
x ∈ Picd,p(π) : dim

(
R1ρ∗U (ap− bq)⊗ Y(n⃗)

)
x
≥ sτ−1(b, a+ 1)

for all a, b ∈ Z, n⃗ ∈ Zℓ−1
}
.

Here we abuse notation slightly and write p, q,Y(n⃗) for the pullbacks of divisors and line bundles
on X to X ×B Picd,p. For each choice of a, b ∈ Z, n⃗ ∈ Zℓ−1, the locus of x ∈ Picd,p(π) satisfying the
inequality above has the natural structure of a closed subscheme, cut out by a Fitting ideal of the
sheaf R1ρ∗U (ap− bq))⊗ Y(n⃗). Therefore W τ (π, p, q) is a closed subscheme.

This construction will be no good unless its fibers over smooth members (Xb, pb, qb) coincide with
the construction of W τ (Xb, pb, qb). Fortunately, they do. Since the fibers of ρ are 1-dimensional,
the theorem on cohomology and base change implies that for all t ∈ B, the fiber W τ (π, p, q)t over
t is

(10)
{
[L] ∈ Picd,pt(Xt) : h

1(Xt,L(apt − bqt)⊗ Y(n⃗)t) ≥ sτ−1(b, a+ 1) for all a, b ∈ Z, n⃗ ∈ Zℓ−1
}
,

and when Xt is smooth, we have Y(n⃗)t ∼= OXt for all n⃗ ∈ Zℓ−1. It follows that if Xt is smooth,
then the fiber W τ (π, p, q)t is none other than W τ (Xt, pt, qt), as we would hope.

Remark 5.2. A word on our use of cohomology and base change may clarify why we use h1 rather
than h0 here. The fact we have used is that if f : X → Y is a morphism, and F is a sheaf on X,
flat over Y , such that H2(Xy,Fy) = 0 for all y ∈ Y (e.g. if the fibers are one-dimensional as in our
situation), then the natural map ϕ1(y) : (R1f∗F)y → H1(Xy,Fy) is an isomorphism. See [Har77,
Theorem 12.11], whose notation we mimic in this remark.

On the other hand, when Xt is not smooth, the line bundles Y(n⃗)t on Xt are determined up to
isomorphism by Equation (9). Importantly, these bundles are completely determined by the nodal
curve Xt itself, not anything about the geometry of the family. In fact, upon restricting Equation
(9) to a single fiber Xt, we see that the bundle OX(Yi) |Xt is either one of the line bundles Yj as in
Definition 3.3 if Zi meets Xt, or OXt otherwise, and every node of Xt corresponds to one of the Zi.

Corollary 5.3. For all t ∈ B, the fiber W τ (π, p, q)t is isomorphic to W τ (Xt, pt, qt).

Semicontinuity of fiber dimension now proves Theorem 5.1.

6. Permutations for Brill–Noether varieties and splitting loci

We now demonstrate that classical Brill–Noether loci and Hurwitz–Brill–Noether splitting loci
are special cases of transmission loci, with the same expected codimensions. To do so, we first make
a simplification to our description of transmission loci.

6.1. The essential set. In principle, our definition of transmission loci involve infinitely many
inequalities. However, most of them are redundant.

Definition 6.1 ([Pfl22, Definition 7.6]). For any α ∈ ASP, the essential set of α is

Ess(α) = {(a, b) ∈ Z2 : α−1(a− 1) ≥ b > α−1(a), α(b− 1) ≥ a > α(b)}

This definition mirrors the “essential set” defined in [Ful92] for degeneracy loci in a finite-
dimensional vector space, and plays the same role in our analysis. Its key property is the following.

Proposition 6.2 ([Pfl22, Corollary 7.9]). Say that a permutation α has bounded difference if
{|α(n) − n| : n ∈ Z} is bounded. If α, β ∈ ASP have the same shift and α has bounded difference,
then α ≤ β if and only if sα(a, b) ≤ sβ(a, b) for all (a, b) ∈ Ess(α).
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Corollary 6.3. For any twice-marked chain (X, p, q) of genus g, and permutation τ of bounded
difference,

W τ (X, p, q) =
{
[L] ∈ Picχτ+g(C) : h0

(
C,L((a− 1)p− bq)

)
≥ sτ (a, b) for all (a, b) ∈ Ess(τ)

}
.

That is, we need only bound h0 for values of (a, b) in the essential set.

6.2. Brill–Noether loci. For positive integers g, r, d and a genus g curve C, the classical Brill–
Noether locus W r

d (C) is defined to be {[L] ∈ Picd(C) : h0(C,L) ≥ r + 1}. We are interested only

in cases where r+ 1, g− d+ r ≥ 1, since otherwise W r
d (C) = Picd(C). In these cases, the expected

codimension of W r
d (C), as predicted e.g. by Porteous’s formula, is (r + 1)(g − d + r). Corollary

6.3 provides a route to identify Brill–Noether loci with transmission loci; we need only specify the
right permutation.

Definition 6.4. Suppose r ≥ max{0, χ + 1}. Let γrχ be the unique permutation that restricts to
the unique increasing bijection between the following sets. For readability, we use interval notation,
but in each case we mean the intersection with Z.

(−∞,−1]
∼−→ (−∞,−r − 1] ∪ [1, r − χ]

[0,∞)
∼−→ [−r, 0] ∪ [r − χ+ 1,∞)

The following facts about γrχ are straightforward to verify from definitions.

Lemma 6.5. The essential set of γ = γrχ is {(1, 0)}, and sγ(1, 0) = r+1. The shift of γ is χ. The

set of inversions of γ is ([−(r − χ),−1]× [0, r]) ∩ Z2.

Corollary 6.6. If (C, p, q) is a genus g smooth twice-marked curve, and r, d are integers with r ≥ 0

and g− d+ r > 0, then W r
d (C) = W γr

d−g(C, p, q), and inv(γrd−g) = (r+1)(g− d+ r). In particular,

if (C, p, q) has 0-general transmission, then it is Brill-Noether general, in the sense that all W r
d (C)

have dimension exactly g − (r + 1)(g − d+ r).

6.3. Hurwitz–Brill–Noether splitting loci. Throughout this section, fix an integer k ≥ 2. As
in [LLV25], let Hg,k denote the Hurwitz space, parameterizing degree-k covers π : C → P1 from
a genus g smooth curve, and let Hg,k,2 denote the moduli space of degree-k covers together with
two marked points p, q ∈ C of total ramification. Equivalently, this is the moduli space of twice-
marked smooth curves (C, p, q) such that kp ∼ kq. Hurwitz–Brill–Noether theory concerns the
description of the Brill–Noether varieties of a general point in Hg,k, and early work concerned the
determination of dimW r

d (C) such curves [CM99, CM02, Pfl17a, JR21]. More recently, Cook-Powell–
Jensen [CPJ22a, CPJ22b] and Larson [Lar21a] independently refined the theory by observing that
for a point in Hg,k, Pic(C) has a much more refined and well-behaved stratification: into splitting
loci. In particular, this refinement is naturally studied by Larson’s results on splitting loci [Lar21b].
Splitting loci answered a riddle originally present in the formula for dimW r

d (C) conjectured in
[Pfl17a] and proved in [JR21], which suggested that W r

d (C) is not equidimensional for general k-
gonal curves; the reason is that W r

d (C) decomposes into several “balanced splitting loci” that may
have different dimensions. The full suite of classical theorems in Brill–Noether theory has recently
been generalized to the context of splitting loci by Larson, Larson, and Vogt [LLV25].

Definition 6.7. A splitting type is a nondecreasing k-tuple e⃗ = (e1, · · · , ek) ∈ Zk. For a splitting

type e⃗, let xe⃗ : Z → N be the function xe⃗(m) =
∑k

n=1max{en + 1 +m, 0}. For a cover π : C → P1

in Hg,k with P = π∗OP1(1), define the splitting locus

W e⃗(C,P ) = {[L] ∈ Picd(e⃗)(C) : h0(P1,L(mP )) ≥ xe⃗(m) for all m ∈ Z}.
The expected codimension of W e⃗(C,P ) is the number u(e⃗) =

∑
0≤m,n<k max{0, em − en − 1}.
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Our notation differs slightly from [LLV25], in that we specify the divisor class P . If k is the
gonality of C this can be left implicit, but we include it for emphasis and because for larger k
the choice of P need not be unique. The definition of splitting loci above is reminiscent of our
definition of transmission loci, and indeed this is not a coincidence: we show in this section that
for (C, p, q) in Hg,k,2, i.e. in the situation where P ∼ kp ∼ kq, splitting loci are transmission
loci, and the stratification by transmission loci may be viewed as a further refinement of the
splitting type stratification. There is another, more geometrically meaningful definition of splitting
loci that explains their name: [L] belongs to the open part of W e⃗(C,P ) (the complement of all

W f⃗ (C,P ) ⊊ W e⃗(C,P )) if and only if π∗L is isomorphic to OP1(e1)⊕ · · · ⊕ OP1(ek).
Larson proved in [Lar21a], via intersection theory techniques developed in [Lar21b], that for

every point in Hg,k, W
e⃗(C,P ) is nonempty if u(e⃗) ≤ g, and every component has codimension at

most u(e⃗) if so. For a general point in Hg,k, Larson [Lar21a] and Cook-Powell–Jensen [CPJ22a]

independently proved that every component of W e⃗(C,P ) has codimension at least u(e⃗); the results
of this paper provide a new proof of that in the broader context of transmission loci. Much stronger
results about irreducibility, smoothness, and monodromy of splitting loci can be found in [LLV25],
and we conjecture that the same results should hold for transmission loci (Conjecture 7.2).

6.4. Associating permutations to splitting loci. For a point (C, p, q) ofHg,k,2, we have kp ∼ kq

and therefore every transmission permutation is in Σ̃k. There is a cover π : C → P1 totally ramified
at p and q, so the class of the fiber is P = kp. In particular, for all m ∈ Z, h0(C,L(mP )) =
sp,qL (1 + mk, 0) = sp,qL (1 + ak, bk) for all a, b ∈ Z such that a − b = m. So the transmission
function/permutation of L determines its splitting type. We demonstrate in this section how to

read the splitting type from a permutation in Σ̃k, and how to identify a splitting locus with a
transmission locus. The content of this section is not novel, and indeed the affine symmetric groups
are used systematically to study splitting loci in [LLV25] (see especially Theorem 1.4); we include
this section only for completeness and to explain the story in our notation.

Call a permutation ρ ∈ Σ̃k residual if it restricts to a permutation of {0, . . . , k − 1}. For any

α ∈ Σ̃k, there exists a unique pair (ρ, π) of a residual permutation and a k-periodic function such
that

α(n) = ρ(n) + 1 + kπ(n).

Conversely, every such pair (ρ, π) gives an α ∈ Σ̃k. This decomposition is convenient for studying
the splitting type; the +1 above is a convenience, as we will see. If α has this decomposition, then
its inverse is

α−1(n) = ρ−1(n− 1)− kπ(ρ−1(n− 1)).

The residual permutation is irrelevant to the values of the slipface determining the splitting type
of α, because

sα(1 + ak, bk) =
k−1∑
n=0

#{q ∈ Z : n+ qk ≥ bk and α(n+ qk) < 1 + ak}

=
k−1∑
n=0

max{0, a− b− π(n)}.

So the splitting type of α is given by sorting the tuple (−π(0)−1, · · · ,−π(k−1)−1) to nondecreasing

order. In particular, this shows that every splitting type occurs for some α ∈ Σ̃k. We may also
obtain a useful bound on invk(α) from π alone. Observe that

invk(α) ≤ #

{
(m,n) : 0 ≤ n < k,

⌊m
k

⌋
<

⌊n
k

⌋
,

⌊
α(m)− 1

k

⌋
<

⌊
α(n)− 1

k

⌋}
,
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and equality holds if and only if α is increasing on {0, · · · , k−1} and α−1 is increasing on {1, · · · , k}.
This upper bound may be computed from π alone. For fixed 0 ≤ m,n < k, consider which pairs

(m − qk, n) are counted by this upper bound. We have
⌊
m−qk

k

⌋
<

⌊
n
k

⌋
if and only if 0 < q,

and
⌊
α(m−qk)−1

k

⌋
<

⌊
α(n)−1

k

⌋
if and only if π(m) − q < π(n). So the number of such pairs is

max{0, π(n)− π(m)− 1}, and we deduce that

(11) invk(α) ≤
∑

0≤m,n<k

{max{0, π(n)− π(m)− 1},

with equality if and only if α is increasing on {0, · · · , k − 1} and α−1 is increasing on {1, · · · , k}.
Conveniently, this equality case coincides with another useful situation: when the essential set

consists only of pairs (1 + ak, bk). In this case, Wα(C, p, q) is identical to a splitting locus. Note
that we use here the fact that if α is increasing on a set, then it is automatically increasing on
any translate of that set by a multiple of k. We will now classify the choices of ρ, π for which this
situation occurs. Observe that if 0 ≤ m,n < k, and we wish to determine which of α(m), α(n) is
larger, we can do so by comparing π(m), π(n), and breaking a tie with ρ(m), ρ(n). From this and
the discussion above, we obtain the following classification.

Lemma 6.8. Say that ρ is increasing when π is tied if for all 0 ≤ m,n < k, if π(m) = π(n) then
m < n if and only if ρ(m) < ρ(n). The permutation α defined above is increasing on {0, · · · , k−1}
if and only if π(0) ≤ · · · ≤ π(k − 1) and ρ is increasing when π is tied. On the other hand, α−1

is increasing on {1, · · · , k} if and only if π(ρ−1(0)) ≥ π(ρ−1(1)) ≥ · · · ≥ π(ρ−1(k − 1)) and ρ is
increasing when π is tied.

Corollary 6.9. For a fixed k-periodic function π, there exists a residual permutation ρ such that
α = ρ+1+ kπ is increasing on {0, · · · , k− 1} and α−1 is increasing on {1, · · · , k} if and only if π
is nondecreasing on {0, · · · , k − 1}. If such ρ exists, it is unique.

Proof. The lemmas above show that it is necessary for π to be nondecreasing on {0, · · · , k− 1}. If
so, then α has the desired property if and only if ρ is increasing when π is tied, and precomposing
with ρ−1 reverses the order of π(0), · · · , π(k − 1). This uniquely determines ρ: ρ(0), · · · , ρ(k − 1)
must consist of the indices for which π(n) is maximum, in increasing order, followed by the indices
where π(n) is the second-larger value, in increasing order, and so on. Explicitly,

ρ(n) = #{m : 0 ≤ m < k, π(m) < π(n)}+#{m : 0 ≤ m < n, π(m) = π(n)}
for all 0 ≤ n < k. Note that this formula closely resembles the construction of the permutation
w(e⃗) in [LLV25, Theorem 1.4]; up to some conventions, the two constructions are the same. □

Definition 6.10. For any splitting type (nondecreasing k-tuple) e⃗ = (e1, · · · , ek), let γe⃗ = ρ+1+kπ,
where π is the k-periodic function determined by π(n) = −ek−n − 1 for 0 ≤ n < k (so that
π(0) ≤ · · · ≤ π(k − 1)) and ρ is the permutation described in Corollary 6.9.

Proposition 6.11. The permutation γ = γe⃗ has sγ(1 + ak, bk) = xe⃗(a − b) for all a, b ∈ Z,
Ess(γ) ⊆ {(1 + ak, bk) : a, b ∈ Z}, and invk(γ) = u(e⃗).

Proof. The computation of sγ(1 + ak, bk) is carried out above. The description of γ in Corollary
6.9 and identity γ(n+ k) = γ(n)+ k implies that γ(b) < γ(b− 1) is only possible for b ≡ 0 (mod k)
and γ−1(a) < γ−1(a − 1) is only possible for a ≡ 1 (mod k), hence (a, b) ∈ Ess(γ) implies that
a ≡ 1 (mod k) and b ≡ 0 (mod k). Equation (11) implies that invk(γ) = u(e⃗). □

Corollary 6.12. For any point (C, p, q) of Hg,k,2, the splitting locus W e⃗(C, kp) is equal to the
transmission locus W γe⃗(C, p, q), and the expected codimensions match. In particular, if (C, p, q) has
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k-general transmission, then it is Hurwitz–Brill–Noether general, in the sense that all its splitting
loci have the expected dimension.

7. Questions and conjectures

We end with some conjectures and questions for future work. We mentioned the first conjecture
in the introduction.

Conjecture 7.1. Let k ≥ 2. On any (C, p, q) with kp ∼ kq, every component of W τ (C, p, q) has
codimension at most invk(α).

After being circulated in an early draft of this paper, Conjecture 7.1 was proved by Daksh
Aggarwal, along with other structural results on transmission loci.

Conjecture 7.2. All statements of [LLV25, Theorem 1.2] generalize from splitting loci to trans-
mission loci of a general point in Hg,k,2 (or Mg,2, for k = 0). In particular, the intersection theory
class of W τ (C, p, q) is

[W τ (C, p, q)] =
N(τ)

invk(τ)!
Θinvk(τ),

where N(τ) is the number of reduced words for ι−χτ τ (this ι−χτ serves to convert τ to something
of shift 0). Furthermore, at any point of Hg,k,2, W

τ (C, p, q) supports this intersection class.

In the case k = 0, this enumerative formula follows from the results of [Pfl25], so the k ≥ 2 case is
of primary interest. It is very plausible to me that the methods of [LLV25] can be adapted to prove
this conjecture. A notable special case is invk(τ) = g; as observed in Example 3.8 the Demazure
product machinery gives a bijection between reduced words for τ and points of W τ (X, p, q) on an
elliptic chain X, and more generally Proposition 3.7 points to the very explicit link between reduced
words and transmission loci on elliptic chains that is provided by the Demazure product.

Conjecture 7.3. Let π : X → B be a versal family in Mg,2 (if k = 0) or Hg,k,2 (if k ≥ 2). In a
relative transmission locus W τ (π, p, q), every component has codimension at most invk(τ).

The importance of this conjecture is that it would allow a “regeneration theorem,” akin to the
regeneration theorem for limit linear series, to be proved for transmission loci: if a transmission
locus has the expected dimension on a singular curve, then this conjecture would show that it is
part of a component that also lies over nearby smooth curves with the expected dimension.

Question 7.4. For which permutations τ and genera g does there exist a smooth twice-marked
curve (C, p, q) of genus g and line bundle L with τp,qL = τ?

I expect this question to be quite hard to answer in full generality, since it strictly generalizes the
question of which Weierstrass semigroups occur on marked algebraic curves, which is still wide open
(see e.g. [KY13]). The last question is a variation that adds an expected dimension requirement,
similar to the study of dimensionally proper Weierstrass points in [EH87], for example.

Question 7.5. Given τ ∈ Σ̃k and a genus g < invk(τ), suppose that (C, p, q) and L are such that
W τ (C, p, q) is nonempty. Call a point ofW τ (C, p, q) dimensionally proper if, in a versal deformation
π : X → B of (C, p, q) in Mg,2 (if k = 0) or Hg,k,2 (if k ≥ 2), (C, p, q, [L]) belongs to a component
of W τ (π, p, q) of dimension exactly the expected dimension dimB+ g− invk(τ). For which τ, g, do
there exist such dimensionally proper points?
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