Math 105 Midterm Exam \#3 December 6, 2013

1. [15 Points] Critical Numbers

(a) Find critical numbers for the function $f(x)=\frac{x^{2}+1}{x-3}$.
$f^{\prime}(x)=\frac{(x-3)(2 x)-\left(x^{2}+1\right)(1)}{(x-3)^{2}}=\frac{2 x^{2}-6 x-x^{2}-1}{(x-3)^{2}}=\frac{x^{2}-6 x-1}{(x-3)^{2}}$
Here $f^{\prime}(x)=0$ when $x^{2}-6 x-1=0$ or using the Quadratic Formula:
$x=\frac{6 \pm \sqrt{36-4(1)(-1)}}{2}=\frac{6 \pm \sqrt{40}}{2}=\frac{6 \pm \sqrt{4} \sqrt{10}}{2}=\frac{6 \pm 2 \sqrt{10}}{2}=3 \pm \sqrt{10}$
Notice that $f^{\prime}(x)$ is undefined at $x=3$, but $x=3$ was not in the domain of the original function, so it's not technically a critical number.
Finally the critical numbers are $x=3 \pm \sqrt{10}$
(b) Find the critical numbers for $f(x)=x^{\frac{4}{3}}-4 x^{\frac{1}{3}}$.

First $f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}}-\left(\frac{4}{3}\right) x^{-\frac{2}{3}}=\frac{4 x^{\frac{1}{3}}}{3}-\frac{4}{3 x^{\frac{2}{3}}}=\left(\frac{x^{\frac{2}{3}}}{x^{\frac{2}{3}}}\right) \frac{4 x^{\frac{1}{3}}}{3}-\frac{4}{3 x^{\frac{2}{3}}}=\frac{4 x}{3 x^{\frac{2}{3}}}-\frac{4}{3 x^{\frac{2}{3}}}=\frac{4 x-4}{3 x^{\frac{2}{3}}}=0$
when the numerator equals 0 , which is when $4 x-4=0$ or when $x=1$.
Secondly the derivative is underfined when the denominator equals 0 here, when $x=0$, which is in the domain of the original function.

Finally the critical numbers are $x=1$ and $x=0$

2. [20 Points] Absolute Extreme Values

(a) Find the absolute maximum and absolute minimum values of

$$
G(x)=(x-3)^{2}(x+2)^{3} \quad \text { on } \quad[0,4] .
$$

$G^{\prime}(x)=(x-3)^{2} \cdot 3(x+2)^{2}+(x+2)^{3} \cdot 2(x-3)$
$=(x-3)(x+2)^{2}[3(x-3)+2(x+2)]=(x-3)(x+2)^{2}[5 x-5]$.
On the interval $[0,4], G^{\prime}$ is always defined. Also, $G^{\prime}(x)=0$ happens only when $x=3, x=-2$, and $x=1$ (our critical numbers). Here $x=-2$ is outside of our interval of interest. Applying the closed interval method:
$G(1)=108$
$G(3)=0 \longleftarrow$ Absolute Minimum Value
$G(0)=72$
$G(4)=216 \longleftarrow$ Absolute Maximum Value
So the absolute maximum value is 216 (attained at $x=4$), and the absolute minimum value is 0 (attained at $x=3$).
(b) Find the absolute maximum and absolute minimum values of

$$
F(x)=x \sqrt{4-x^{2}} \quad \text { on } \quad[-1,2] .
$$

First compute the derivative
$f^{\prime}(x)=x \frac{1}{2 \sqrt{4-x^{2}}}(-2 x)+\sqrt{4-x^{2}}(1)=\frac{-2 x^{2}}{2 \sqrt{4-x^{2}}}+\sqrt{4-x^{2}}\left(\frac{2 \sqrt{4-x^{2}}}{2 \sqrt{4-x^{2}}}\right)$
$=\frac{-2 x^{2}}{2 \sqrt{4-x^{2}}}+\left(\frac{2\left(4-x^{2}\right)}{2 \sqrt{4-x^{2}}}\right)=\frac{-2 x^{2}+8-2 x^{2}}{2 \sqrt{4-x^{2}}}=\frac{8-4 x^{2}}{2 \sqrt{4-x^{2}}}$.
$f^{\prime}(x) \stackrel{\text { set }}{=} 0$ when $8-4 x^{2}=0$ or $x= \pm \sqrt{2}$.
$f^{\prime}(x)$ is undefined at $x= \pm 2$, which are in the domain of the original function.
So the critical numbers are $x= \pm 2$ and $x= \pm \sqrt{2}$. Here $x=-2$ and $x=-\sqrt{2}$ are not in the interval of interest.

Applying the Closed Interval method:
$f(\sqrt{2})=\sqrt{2} \sqrt{2}=2 \longleftarrow$ Absolute Maximum Value
$f(-1)=\boxed{-\sqrt{3}} \longleftarrow$ Absolute Minimum Value
$f(2)=0$
So the absolute maximum value is 2 (attained at $x=\sqrt{2}$), and the absolute minimum value is $-\sqrt{3}$ (attained at $x=-1$).

3. [20 Points] Related Rates

A conical paper cup of water is 4 inches across the entire top and 5 inches deep. It has a hole in the bottom point and is leaking water at 2 cubic inches per second. At what rate is the height of the water level decreasing when the water height is 1 inch?

$$
* * * \text { Recall the volume of the cone is given by } V=\frac{1}{3} \pi r^{2} h^{* * *}
$$

The cross section (with water level drawn in) looks like:

- Diagram

- Variables

Let $r=$ radius of the water level at time t
Let $h=$ height of the water level at time t
Let $V=$ volume of the water in the tank at time t
Find $\frac{d h}{d t}=$? when $h=1$ feet

$$
\text { and } \frac{d V}{d t}=-2 \frac{\mathrm{in}^{3}}{\sec }
$$

- Equation relating the variables:

Volume $=V=\frac{1}{3} \pi r^{2} h$

- Extra solvable information: Note that r is not mentioned in the problem's info. But there is a relationship, via similar triangles, between r and h. We must have

$$
\frac{r}{2}=\frac{h}{5} \Longrightarrow r=\frac{2 h}{5}
$$

After substituting into our previous equation, we get:
$V=\frac{1}{3} \pi\left(\frac{2 h}{5}\right)^{2} h=\frac{4}{75} \pi h^{3}$

- Differentiate both sides w.r.t. time t.
$\frac{d}{d t}(V)=\frac{d}{d t}\left(\frac{4}{75} \pi h^{3}\right) \Longrightarrow \frac{d V}{d t}=\frac{4}{75} \pi \cdot 3 h^{2} \cdot \frac{d h}{d t} \Longrightarrow \frac{d V}{d t}=\frac{4}{25} \pi h^{2} \frac{d h}{d t}$ (Related Rates!)
- Substitute Key Moment Information (now and not before now!!!):
$-2=\frac{4}{25} \pi(1)^{2} \frac{d h}{d t}$
- Solve for the desired quantity:
$\frac{d h}{d t}=-\frac{50}{4 \pi}=-\frac{25}{2 \pi} \frac{\mathrm{ft}}{\mathrm{sec}}$
- Answer the question that was asked: The water height is decreasing at a rate of $\frac{25}{2 \pi}$ inches every second at that moment.

4. [15 Points] Limits at Infinity

(a) $\lim _{x \rightarrow \infty} \frac{x^{9}+8 x^{7}+6 x^{5}+4}{3 x^{2}+1}=\lim _{x \rightarrow \infty} \frac{x^{9}+8 x^{7}+6 x^{5}+4}{3 x^{2}+1} \cdot \frac{\left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{x^{7}+8 x^{5}+6 x^{3}+\frac{4}{x^{2}}}{3+\frac{1}{x^{2}}}=\infty$
(b) $\lim _{x \rightarrow-\infty} \frac{1-x^{3}}{7 x^{3}+x^{2}-100}=\lim _{x \rightarrow \infty} \frac{1-x^{3}}{7 x^{3}+x^{2}-100} \cdot \frac{\left(\frac{1}{x^{3}}\right)}{\left(\frac{1}{x^{3}}\right)}$
$=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}-1}{7+\frac{1}{x}-\frac{100}{x^{3}}}=-\frac{1}{7}$
(c) $\lim _{x \rightarrow \infty} \frac{x^{2}-x+1}{2 x^{5}+7 x^{2}+3}=\lim _{x \rightarrow \infty} \frac{x^{2}-x+1}{2 x^{5}+7 x^{2}+3} \cdot \frac{\left(\frac{1}{x^{5}}\right)}{\left(\frac{1}{x^{5}}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{3}}-\frac{1}{x^{4}}+\frac{1}{x^{5}}}{2+\frac{7}{x^{3}}+\frac{3}{x^{5}}}=0$

5. [20 Points] Curve Sketching Let $f(x)=\frac{-x^{2}+x+2}{x^{2}-2 x+1}$.

For this function, discuss domain, vertical and horizontal asymptotes, intervals of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve.

Take my word for it that (you do NOT have to compute these)

$$
f^{\prime}(x)=\frac{x-5}{(x-1)^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{-2 x+14}{(x-1)^{4}}
$$

- Domain: $f(x)$ has domain $\{x \mid x \neq 1\}$
- VA: Vertical asymptotes $x=1$.
- HA: Horizontal asymptote is $y=-1$ for this f since $\lim _{x \rightarrow \pm \infty} f(x)=-1$ because

$$
\lim _{x \rightarrow \pm \infty} \frac{-x^{2}+x+2}{x^{2}-2 x+1} \cdot \frac{\left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \pm \infty} \frac{-1+\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{2}{x}+\frac{1}{x^{2}}}=-1
$$

- First Derivative Information:

We know $f^{\prime}(x)=\frac{x-5}{(x-1)^{3}}$. The critical points occur where f^{\prime} is undefined or zero. The former happens when $x=1$, but $x=1$ was not in the domain of the original function, so it isn't technically a critical number. The latter happens when $x=5$. As a result, $x=5$ is the critical number. Using sign testing/analysis for f^{\prime},

So f is decreasing on $(1,5)$ and increasing on $(-\infty, 1)$ and $(5, \infty)$. Moreover, f has a local mi n at $x=5$ with $f(5)=-\frac{9}{8}$.

- Second Derivative Information:

Meanwhile, $f^{\prime \prime}=\frac{-2 x+14}{(x-1)^{4}} \cdot f^{\prime \prime}=0$ when $x=7$. Using sign testing/analysis for $f^{\prime \prime}$,

So f is concave down on $(7, \infty))$ and concave up on $(-\infty, 1)$ and $(1,7)$. There is an inflection point at $\left(7,-\frac{10}{9}\right)$.

- Piece the first and second derivative information together:

- Sketch:

								61																
								5																
								4																
								3			\|													
								2																
-9	-8	-7	-6	-5	-4	-3								4	5	6	6	7)		10	11	12
								-1	1															
									2															
								-3	3															
									4															
								-5	5															
								-6	6															

