Name: Solutions

- Keep phones off and out sight.
- No calculators, notes, books, or other aids.
- Do not talk during the quiz.
- · Show all work.
- 1. Find the absolute maximum and absolute minimum of the function $f(x) = 4x x^2$ on the interval [0,3].

$$f'(x) = 4-2x$$

Cait. pt:

 $f'(x)$ undefined: nowhere.

 $f'(x) = 0$
 $\langle = \rangle 4 = 2x$
 $\langle = \rangle \times = 2$

Candidates: 0, 3, 82.

bdy. $\{f(0) = 0 \leftarrow \min \}$
 $\{f(3) = 12-q = 3\}$

Cait. $\{f(2) = 8-4 = 4 \leftarrow \max \}$

on
$$[0,3]$$
:
alm. max is 4 ($ex=2$)
alm. min is 0 ($ex=0$)

2. Find all critical numbers of the function $f(x) = 3x^{2/3} - 4x$. (Only the x-coordinates) are needed.)

$$f'(x) = 3.\frac{2}{3}x^{-1/3} - 4$$

= $\frac{2}{x^{1/3}} - 4$.

undefined at x=0

$$f'(x) = 0$$
 $(=) \frac{2}{x^{1/3}} = 4$

$$\langle = \rangle \quad \frac{1}{2} = \chi^{1/3}$$

$$\langle = \rangle \frac{1}{8} = x$$

crit. numbers are
$$x=0$$
 & $x=1/8$

(problem 3 on reverse)

Friday 11/16. page 1 of 2

page 2 of 2

3. Find all critical numbers of the function $f(x) = (x-2)^3(x-7)^2$. (Only the x-coordinates are needed.)

Hint: remember to look for common factors before expanding anything!

$$f'(x) = 3(x-2)^{2}(x-7)^{2} + (x-2)^{3} \cdot 2(x-7)$$

$$= (x-2)^{2}(x-7) \cdot [3(x-7) + 2(x-2)]$$

$$= (x-2)^{2}(x-7) \cdot [3x-21 + 2x - 4]$$

$$= (x-2)^{2}(x-7) \cdot (5x-25)$$

$$= 5(x-2)^{2}(x-7)(x-5)$$

undefined: nowhere.

$$f'(x)=0$$
 (=) $x-2=0$, $x-7=0$, or $x-5=0$.
(=) $x=2,5, or 7$.

Friday 11/16.