Name: Solutions

- Keep phones off and out sight.
- Do not talk during the quiz.
- 1. Consider the function  $f(x) = \frac{x}{x^2 + 4}$ .
- No calculators, notes, books, or other aids.
- Show all work.

(a) Determine the intervals on which 
$$f(x)$$
 is increasing and decreasing.
$$f'(x) = \frac{i'(x^2+4) - x \cdot 2x}{(x^2+4)^2} = \frac{4 - x^2}{(x^2+4)^2} = \frac{(x+2)(x-2)}{(x^2+4)^2}$$

(b) Find the x-coordinates of any local max(s) and min(s) of f(x).

By 1st deriv. test,

- 2. Consider the function  $f(x) = x^3 3x^2 9x + 2$ .
  - (a) Find the x-coordinates of any local max(s) and min(s) of f(x).

$$f'(x) = 3x^{2}-6x-9$$
  
=  $3(x^{2}-2x-3)$   
=  $3(x+1)(x-3)$   
By 1st deniv. test,  
| local max @ x=-1 (//) (st numbers -1 & 3 (//) (numundefined) (numbers -1 & 3 (//) (numundefined) (nu

(b) Find the intervals on which f(x) is concave up and concave down.

(c) Find the x-coordinates of any inflection point(s) of y = f(x).

[x=1] (changes from conc. down to conc. up)

Friday 11/29.

page 2 of 2