- Margaret and I will be available to help you with the problems. You should also ask your group members questions, and share your ideas with each other.
- Focus on understanding the solution each problem, and on being able to explain them to each other.

Recall the limit definition of the derivative.

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

The value $f^{\prime}(x)$ is the slope of the tangent line at the point $(x, f(x))$.

1. Suppose that $f(x)=5-6 x+4 x^{2}$.
(a) Compute $f^{\prime}(1)$ using the limit definition. (Set $x=1$ in the definition)
(b) Write the equation of the tangent line to the curve $y=f(x)$ at the point where $x=1$.
2. For each of the following, find $f^{\prime}(x)$ using the limit definition of the derivative $\left({ }^{* *}\right)$.
(a) $f(x)=x^{3}$
(b) $f(x)=\sqrt{x}$
(c) $f(x)=\frac{1}{x}$
(d) $f(x)=\frac{x+1}{x-1}$
(e) $f(x)=\frac{1}{\sqrt{x}}$
3. When simplifying a sum or difference of two complicated expressions, it often saves a lot of work to look for common factors before proceeding. This problem gives some practice identifying common factors.
(a) Consider the expression

$$
9 x^{2} y+2 x y^{3} .
$$

Simplify this expression by factoring out $x y$.
(b) Consider the expression

$$
2(x+1)^{2} y^{3}-8(x+1) y^{5} .
$$

What is the biggest common factor that can be factored out? Factor this out and simplify the expression.
(c) Simplify the expression

$$
3(x+1)^{2}(1-2 x)^{4}+(x+1)^{3} 4(1-2 x)^{3}(-2) .
$$

This problem arises in a derivative computation that we will do in a couple weeks.
4. Shown below is the graph of a function $f(x)$.

(a) For which values of x is $f^{\prime}(x)$ equal to 0 ? Where is it positive? Where is it negative?
(b) Sketch a little piece of the tangent line to this curves at $x=0,2,4,6,8$, and 10 . Using these sketches, approximate the value of $f^{\prime}(x)$ at each of these points (no need to be too exact, just get a rough estimate.)
(c) Plot these 6 values of $f^{\prime}(x)$ on the axes below. Use them to make a rough sketch of the graph $y=f^{\prime}(x)$ of the derivative function.

