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1 Introuction

Today we will begin to write down some shortcuts for computing derivative of some common sorts of func-
tions. The first functions we consider will be polynomials. Polynomials are the most basic functions in
mathematics, for two reasons: first, they are the functions that are “built up” from only addition and mul-
tiplication. Second, they are the only functions which become 0 after being differentiating sufficiently many
times.

2 The derivative of xn

From now on, we will freely use the following fact, without bothering to evaluate any limits. This is called
the power rule.

d

dx
xn = nxn−1 (where n is a constant)

Warning. It is very important to remember that this rule is only valid when n is a constant, and x is
the variable. For example, a very common mistake is for students to attempt to differentiable f(x) = 2x and
obtaining x · 2x−1, which is not true (for example, this would be negative for x = −1, even though f(x) is
an increasing function everywhere).

For example:

• For any value of x, x0 = 1. So this rule says that d
dx1 = 0. This is just the fact that a constant

function has a zero derivative.

• For n = 1, this rules says that d
dxx = 1. This is not too surprising, since the notation really suggests

that dx
dx ought to be 1. This is just the fact that the derivative of a linear function is constant,

equal to the slope of the graph.

• For n=2, we get the fact that d
dxx

2 = 2x, which we’ve seen a couple times before.

You can simply memorize this rule if you like, but I will mention a few mnemonics for remembering
where it comes from. These are not part of the course; I include them in case they are helpful for you to
understand the fact.

2.1 A visual mnemonic

Think of x2 as the area of a square with side length x. Now imagine that you change x be a very small
amount, ∆x. This changes the square as follows.
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x ∆x

∆(x2) ≈ 2x∆x

If ∆x is very small, the change in the area of the square just consists of this little stripe, of width ∆x.
This stripe is essentially two pieces, each of length x and width ∆x. So this suggests that ∆x2 ≈ 2x∆x. (In
fact, ∆x2 is exactly 2∆x + (∆x)2; the second term becomes negligible in the limit).

A similar picture results when you imagine x3 as the volume of a cube with side length x, although it is
somewhat tricky to draw on a page. Here is a rough sketch.

The cube grows out in three directions. Each direction gives one slice, of thickness ∆x and area x2. So
it appears from this picture that ∆(x3) ≈ 3x∆x.

It takes a bit of imagination, but you can convincr yourself that the same picture should be true in 4 or
more dimensions also – an n-dimensional “hypercube”1 grows outward in n directions, each of which leads
to a (n− 1)-dimensional hypercube. Thus d

dxx
n = nxn−1.

2.2 Expanding (x+ h)n

Some of you may know the trick where you can use Pascal’s triangle to expand the expression (x+h)n. This
is one way to get the power rule. Actually, though, one basic insight is that you don’t need to expand the
whole thing: just the first two terms will suffice. Just group anything that is multiplied by h2 together and
don’t bother to computer what exactly it is. Notice that:

(x + h)2 = x2 + 2xh + h2

(x + h)3 = (x + h)(x + h)2

= (x3 + 2x2h + h2(· · · )) + (x2h + h2(· · · ))
= x3 + 3x2h + h2(· · · )

(x + h)4 = (x + h)(x + h)3

= (x4 + 3x3h + h2(· · · )) + (x3h + h2(· · · ))
= x4 + 4x3h + h2(· · · )

1This is the real word used by mathematicians.
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This pattern continues. For any positive integer n, expanding (x + h)n yields xn + nxn−1h + h2(· · · )
(where I don’t care what all has been shuffled together into this · · · symbol). The result of this is that the

slope of secant line to the graph y = xn has slope
(x + h)n − xn

h
=

nxn−1h + h2(· · · )
h

, or in other words

nxn−1 + h(· · · ). The limit as h → 0 is therefore just nxn−1 – everything grouped together under the · · ·
disappears because it is multiplied by h, which becomes 0.

3 Differentiating polynomials in general

All that is needed to differentiate any polynomial are the following two basic rules. In words: the derivative
of a sum is the sum of the derivatives, and the derivative of a constant multiple is the same constant multiple
of the derivative. In symbols, these rules are:

1. d
dx (f + g) = d

dxf + d
dxg.

2. For C a constant, d
dx (Cf) = C d

dxf .

Warning. It is very important that C is a constant here. If it is also a function of x, the correct method
to use is called the product rule, which we’ll see later.

This two rules, with the power rule, make it simple to evaluate the derivative of any polynomial. For
example:

d

dx
(7x4 + 4x2 + 9x + 2) =

d

dx
(7x4) +

d

dx
(4x2) +

d

dx
(9x) +

d

dx
(2)

= 7
d

dx
x4 + 4

d

dx
x2 + 9

d

dx
(x) + 2

d

dx
(1)

= 7 · 4x3 + 4 · 2x + 9 · 1 · 1 + 2 · 0
= 28x3 + 8x + 9

I’ve only shown these steps in full detail to emphasize that all we are using are the power rule and the
rules for sums and multiples. You are free to skip straight to the last line in your work (or to the second to
last if the multiplication is a tricky).

4 Negative and fractional powers of x

Although the derivation we have sketched above only applies to functions f(x) = xn where n is a positive
integer, it turns out that the same formula remains valid even for negative or fractional exponents. I will
not give a derivation for this fact (if you are curious: it can be established by implicit differentiation or by
logarithmic differentiation; we will discuss both topics later), and merely give some examples.

1. d
dx

√
x = 1

2
√
x

. This is because
√
x = x1/2, whose derivative should therefore be 1

2x
1/2−1 = 1

2x
−1/2,

which in turn can be written 1
2
√
x

.

2. d
dx

1
x = − 1

x2 , because 1
x = x−1.

3. d
dx

1
x2 = − 2

x3 , since 1
x2 = x−2.

4. d
dx

1√
x

= − 1
2x
√
x

, since 1√
x

= x−1/2, whose derivative is therefore − 1
2x
−3/2, which may be written

− 1
2x
√
x

.
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