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1 Introduction

Today we will add one more rule to our toolbox. This rule concerns functions that are expressed as composi-
tions of functions. The idea of a composition is: you can sometimes interpret one function as a sequence of
two steps. The chain rule allows you to differentiate the function be differentiating the two steps individually
and multiplying the results. This rule will allow us to compute a great deal more derivatives, especially when
it is used in conjunction with other rules.

2 The chain rule

The basic idea that underlies the chain rule is: the faster the inputs of a function change, the faster its
outputs will change. So for example, if f(x) is one function, and f(2x) is another, then the “inputs to f” in
the second function are moving twice as fast as the “inputs to f” in the first. So it’s derivative is magnified
by a factor of 2: L f(2z) = 2f(2z).

The chain rule generalizes this principle. There are two standard ways to write it, which are named after
the two mathematicians usually credited with inventing calculus.

The chain rule (Newton notation) | The chain rule (Leibniz notation)
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Here, the symbol o means “composition” (NOT multiplication). It means: feed the outputs from one
function into the other. So the function f o g(x) is just the same thing as f(g(z)).

In the Leibniz notation, the symbol y should refer to something which is a function of x, and the symbol
z should refer to something that is a function of y (and therefore also a function of z).

At first glance, it is not at all obvious how these two statements are related. To show how they both
work, T will illustrate them both to compute the derivative of sin(2x).

Newton notation

Leibniz notation

Let f(x) = sinz and g(z) = 2z.
Then f o g(z) = sin(2z).
So (sin(2x))" = f'(g(x)) - ¢'(x)
= cos(2x) - 2
= 2cos(2x)

Let z = sin(2x) and let y = 2.
Then z = sin(y).
So %sin@x) = ds%y(y)%
= cos(y) - 2 = cos(2x) - 2
= 2cos(2x)

The idea is the same in both cases: when you have a composite function (that is, a function formed

by plugging the output of one function into the input of another), you can pretend the inner function is a

variable and differentiate with respect to it. Then you must multiply the result by the rate of change of the
inner function. The idea is that the term f’(g(z)) (in Newton notation) or the term % (in Leibniz notation)

tells how quickly the output changes per unit change in the input to the outer function, and then the terms
g'(z) and % tell how quickly the inputs to the outer function change per unit change in x.



I think you will probably find the Newton notation easier to apply initially, but I find the Leibniz notation
more intuitively helpful in the long term. In fact, for the first century or so after calculus was invented, the
British preferred Newton’s notation while the French and Germans preferred Leibniz’s notation; it tuned out
that Leibniz’s notation was more practical in leading to further advances, and French scientific knowledge
advanced somewhat faster during this time'. Now of course, we can set patriotism aside and use the two
notations interchangeably, according to which is more useful at any given time.

As an example of how to use the chain rule (in Newton notation this time), consider the following problem.

Ezample 2.1. Suppose that you know the following information about two functions f(z) and g(z). Deter-
wmine (g0 /) (1).
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Solution. By the chain rule, (go f)'(1) = ¢'(f(1)) - f'(1). By the value in the table, f(1) = 2, so this is the
same as ¢'(2) - f/(1). By the values in the table, this is 7 - (—6) = —42.

3 First examples

I will illustrate the chain rule by differentiating the following eight functions.

1. (2z+1)7

2. sin(5z)

3.VTr+1

4. (22 +1)7

5. V1—22

These can be differentiated as follows. I will use Leibniz notation in this section, since I personally prefer
it. Note that in homework and exams, you do not need to show as many steps as I do here — over time you

will get used to skipping some of the more obvious parts (I will also begin to omit some steps in my notes
as well).
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1For a discussion, see Philip E. B. Jourdain’s The Nature of Mathematics, chapter 5.
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4 Examples with multiple rules

In the following examples, we can differentiate the given functions with the help of the chain rule, but the
chain rule must be used in conjunction with some of the other rules we have seen in class.
In this section, I will start to be a little more terse when applying the chain rule, rather than spelling all

steps out in full as in the last section.

T

Ezample 4.1. Differentiate f(z) = sin { ;77 ).

Solution. Here we need to apply the chain rule and the quotient rule in sequence.

d . x x d x .
— sin = cos C— (chain rule)
dz r+1 r+1) dr \xz+1
dz Neg. .2 1
= cos| — . dz @+h-2 g@+l) (quotient rule)
x+1 (x +1)2
Ceos(E (z+1)—=x
B z+1 (z+1)2

T
COs (ac—i—l)

(x+1)2

Ezample 4.2. Differentiate f(z) = y/cos(x?).



Solution. This problem requires the chain rule to be applied twice in sequence.

1
4 cos(z?) (chain rule)

2\/cos(a?) de
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- m (= Sm(x2))£$2 (chain rule again)
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o cos(z?)

cos(x?)

5 Appendix: The chain rule and linear approximation

As usual, this appendix is not part of the course material; it’s included just in case of interest.

An alternative way to formulate the chain rule is: the linear approximation of a composition is the
composition of the linear approrimations. This formulation turns out to be the one that generalizes best to
other situations (especially in multivariable calculus). To my mind, it is also he most intuitive way to think
about it, although this may not be apparent the first time you learn the topic.

This formulation also happens to be the right strategy to use if you actually want to write down a proof
of the chain rule.

To see why this is so, consider the composite function f o g(z). Then its linear approximation around a
given constant c is given as follows.

(fog)(x) = fog(c)+(fog)(c)(x—c) (1)

Now, the linear approximation of g around c is:

g9(z) = g(c) + ¢'(c)(z — ¢) (2)

Now, consider the linear approximation of f(x), not around the input ¢, but rather around the input g(c)
(that is the input that actually gets plugged into the function f):

f(@) ~ fg(e)) + f'(g(c)) (@ = g(c)) (3)

Now look what happens when you combine these last two approximations. They say that:

flg(x)) =~ flg(e)+ f'(g(c) (g(z) — g(c))
flg(e)) + f'(9(c) (g(c) + ¢’ (c)(z — ¢) — g(c))
~ f(g(c) + f'(g(e))g'(c)(z = ¢)

The fact that this is the same as the linear approximation of fog(x) is just the same thing as (fog)'(z) =
f'(g(c))g' (o).
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