Practice Test A for Midterm Exam 1

This practice exam is a slightly modified version of an exam written by Rob Benedetto.

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book, with access to your one-page note sheet (front and back).

1. [30 Points] Evaluate each of the following limits. Please **justify** your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

(a)
$$\lim_{x \to -3} \frac{x^2 - 2x - 15}{x^2 + x - 6} =$$
 (b) $\lim_{x \to 5} \frac{x^2 - 2x - 15}{|5 - x|} =$

(c)
$$\lim_{x \to 2} \frac{x^2 - 2x - 15}{x^2 + x - 6} =$$
 (d) $\lim_{x \to 5} \frac{x^2 - 2x - 15}{x^2 + x - 6} =$

(e) $\lim_{x \to 2} \frac{x+7}{(x-2)^2} =$ (f) $\lim_{x \to -1} \frac{H(x+1) - H(-1-x)}{x+1} =$ where $H(x) = \sqrt{x+2}$

2. [13 Points] Use translation, etc. to graph the following two functions:

$$f(x) = 5 + \sqrt{6 - x}$$
 $g(x) = \frac{1}{10}(x + 2)^2$

3. [15 Points] Suppose that $f(x) = \frac{x+7}{x-3}$. Compute f'(x) using the limit definition of the derivative.

4. [10 Points] Suppose that $f(x) = x^2 - 7x - 12$. Write the **equation of the tangent line** to the curve y = f(x) when x = -2. **Use the limit definition of the derivative when computing the derivative.**

5. [12 Points] Suppose that f and g are functions, and

• $\lim_{x \to 7} f(x) = 5$ • $\lim_{x \to 7} g(x) = -3$ • f(5) = 7 • $g(7) = \lim_{x \to 7} g(x)$

Evaluate the following quantities and fully justify your answers. Do not just put down a value:

(a)
$$\lim_{x \to 7} \sqrt{3f(x) - 7g(x)} =$$

(b) $\lim_{x \to 7} \frac{f(x)}{1 - x} =$
(c) $g \circ f(5) =$

(problems continue next page)

6. [20 Points] Consider the function defined by

$$f(x) = \begin{cases} \sqrt{x-3} & \text{if } x > 3\\ 1 & \text{if } x = 3\\ 6-2x & \text{if } 0 < x < 3\\ 16-x^2 & \text{if } -4 < x \le 0\\ \frac{1}{x+4} & \text{if } x < -4 \end{cases}$$

- (a) Carefully sketch the graph of f(x).
- (b) State the **Domain** of the function f(x).