Practice Test A for Midterm Exam 1

This practice exam is a slightly modified version of an exam written by Rob Benedetto.
Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book, with access to your one-page note sheet (front and back).

1. [30 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(b) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{|5-x|}=$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(d) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(e) $\lim _{x \rightarrow 2} \frac{x+7}{(x-2)^{2}}=$
(f) $\lim _{x \rightarrow-1} \frac{H(x+1)-H(-1-x)}{x+1}=\quad$ where $H(x)=\sqrt{x+2}$
2. [13 Points] Use translation, etc. to graph the following two functions:

$$
f(x)=5+\sqrt{6-x} \quad g(x)=\frac{1}{10}(x+2)^{2}
$$

3. [15 Points] Suppose that $f(x)=\frac{x+7}{x-3}$. Compute $f^{\prime}(x)$ using the limit definition of the derivative.
4. [10 Points] Suppose that $f(x)=x^{2}-7 x-12$. Write the equation of the tangent line to the curve $y=f(x)$ when $x=-2$. ${ }^{* *}$ Use the limit definition of the derivative when computing the derivative.**
5. [12 Points] Suppose that f and g are functions, and

- $\lim _{x \rightarrow 7} f(x)=5$
- $\lim _{x \rightarrow 7} g(x)=-3$
- $f(5)=7$
- $g(7)=\lim _{x \rightarrow 7} g(x)$

Evaluate the following quantities and fully justify your answers. Do not just put down a value:
(a) $\lim _{x \rightarrow 7} \sqrt{3 f(x)-7 g(x)}=$
(b) $\lim _{x \rightarrow 7} \frac{f(x)}{1-x}=$
(c) $g \circ f(5)=$
6. [20 Points] Consider the function defined by

$$
f(x)= \begin{cases}\sqrt{x-3} & \text { if } x>3 \\ 1 & \text { if } x=3 \\ 6-2 x & \text { if } 0<x<3 \\ 16-x^{2} & \text { if }-4<x \leq 0 \\ \frac{1}{x+4} & \text { if } x<-4\end{cases}
$$

(a) Carefully sketch the graph of $f(x)$.
(b) State the Domain of the function $f(x)$.
(c) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow 0^{+}} f(x)= \\ \lim _{x \rightarrow 0^{-}} f(x)= \\ \lim _{x \rightarrow 0} f(x)=\end{array} \quad\right.$ (d) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow 3^{+}} f(x)= \\ \lim _{x \rightarrow 3^{-}} f(x)= \\ \lim _{x \rightarrow 3} f(x)=\end{array}\right.$
(e) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow-4^{+}} f(x)= \\ \lim _{x \rightarrow-4^{-}} f(x)= \\ \lim _{x \rightarrow-4} f(x)=\end{array}\right.$

