Solutions to Practice Test A for Midterm Exam 1

1. [30 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.
(a) $\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(b) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{|5-x|}=$
(c) $\lim _{x \rightarrow 2} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(d) $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x^{2}+x-6}=$
(e) $\lim _{x \rightarrow 2} \frac{x+7}{(x-2)^{2}}=$
(f) $\lim _{x \rightarrow-1} \frac{H(x+1)-H(-1-x)}{x+1}=\quad$ where $H(x)=\sqrt{x+2}$

Solutions. (a): $\lim _{x \rightarrow-3} \frac{x^{2}-2 x-15}{x^{2}+x-6}=\lim _{x \rightarrow-3} \frac{(x+3)(x-5)}{(x+3)(x-2)}=\lim _{x \rightarrow-3} \frac{x-5}{x-2}$ DSP $\frac{-8}{-5}=\frac{8}{5}$
$\overline{\text { (b): } \lim _{x \rightarrow 5}} \frac{x^{2}-2 \overline{x-15}}{|5-x|}$ is piecewise defined right at $x=5$, so we check both sides:
$\mathrm{LHL}=\lim _{x \rightarrow 5^{-}} \frac{x^{2}-2 x-15}{|5-x|}=\lim _{x \rightarrow 5^{-}} \frac{(x+3)(x-5)}{-(x-5)}=\lim _{x \rightarrow 5^{-}}-(x+3) \stackrel{\text { DSP }}{=}-8$
$\mathrm{RHL}=\lim _{x \rightarrow 5^{+}} \frac{x^{2}-2 x-15}{|5-x|}=\lim _{x \rightarrow 5^{+}} \frac{(x+3)(x-5)}{(x-5)}=\lim _{x \rightarrow 5^{+}}(x+3) \stackrel{\text { DSP }}{=} 8$
LHL \neq RHL, so the original limit DNE
$\overline{(c): \lim _{x \rightarrow 2}} \frac{x^{2}-2 \overline{x-15}}{x^{2}+x-6}=\lim _{x \rightarrow 2} \frac{(x+3)(x-5)}{(x+3)(x-2)}=\overline{\lim _{x \rightarrow 2} \frac{x-5}{x-2}}$ is $\frac{-3}{0}$, so we check both sides:

$$
\mathrm{LHL}=\lim _{x \rightarrow 2^{-}} \frac{x-5}{x-2}=\frac{-3}{0^{-}}=+\infty \quad \mathrm{RHL}=\lim _{x \rightarrow 2^{+}} \frac{x-5}{x-2}=\frac{-3}{0^{+}}=-\infty
$$

LHL \neq RHL, so the original limit DNE
(d): $\lim _{x \rightarrow 5} \frac{x^{2}-2 x-15}{x^{2}+x-6} \stackrel{\text { DSP }}{=} \frac{25-\overline{10-15}}{25+5-6}=\frac{0}{24}=0$
$\overline{(\mathrm{e}): \lim _{x \rightarrow 2}} \frac{x+7}{(x-2)^{2}}$ is $\frac{7}{0}$, so we check both sides:

$$
\text { LHL }=\lim _{x \rightarrow 2^{-}} \frac{x+7}{(x-2)^{2}}=\frac{9}{\left(0^{-}\right)^{2}}=+\infty \quad \text { RHL }=\lim _{x \rightarrow 2^{+}} \frac{x+7}{(x-2)^{2}}=\frac{9}{\left(0^{+}\right)^{2}}=+\infty
$$

LHL $=$ RHL, so the original limit diverges to $+\infty$

$$
\text { (f) } \begin{aligned}
& \lim _{x \rightarrow-1} \frac{H(x+1)-H(-1-x)}{x+1}=\lim _{x \rightarrow-1} \frac{\sqrt{(x+1)+2}-\sqrt{(-1-x)+2}}{x+1} \\
&=\lim _{x \rightarrow-1} \frac{\sqrt{(x+1)+2}-\sqrt{(-1-x)+2}}{x+1} \cdot\left(\frac{\sqrt{(x+1)+2}+\sqrt{(-1-x)+2}}{\sqrt{(x+1)+2}+\sqrt{(-1-x)+2}}\right) \\
&=\lim _{x \rightarrow-1} \frac{(x+3)-(1-x)}{(x+1)(\sqrt{x+3}+\sqrt{1-x})}=\lim _{x \rightarrow-1} \frac{2 x+2}{(x+1)(\sqrt{x+3}+\sqrt{1-x})} \\
&=\lim _{x \rightarrow-1} \frac{2(x+1)}{(x+1)(\sqrt{x+3}+\sqrt{1-x})}=\lim _{x \rightarrow-1} \frac{2}{\sqrt{x+3}+\sqrt{1-x}} \mathrm{DSP} \\
&=\frac{2}{\sqrt{2}+\sqrt{2}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

2. [13 Points] Use translation, etc. to graph the following two functions:

$$
f(x)=5+\sqrt{6-x} \quad g(x)=\frac{1}{10}(x+2)^{2}
$$

Solutions. (a): This is $y=\sqrt{x}$ translated left by 6 to make $y=\sqrt{x+6}$ and then reflected left-to-right to make $y=\sqrt{6-x}$, and finally translated up by 5 . So it looks like:

(b): This is $y=x^{2}$ translated left by 2 and then compressed vertically by $\mathbf{1 0}$. So it looks like:

3. [15 Points] Suppose that $f(x)=\frac{x+7}{x-3}$. Compute $f^{\prime}(x)$ using the limit definition of the derivative.
Solution. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{(x+h)+7}{(x+h)-3}-\frac{x+7}{x-3}}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{\frac{x+h+7}{x+h-3}-\frac{x+7}{x-3}}{h} \cdot\left(\frac{(x+h-3)(x-3)}{(x+h-3)(x-3)}\right)=\lim _{h \rightarrow 0} \frac{(x+h+7)(x-3)-(x+7)(x+h-3)}{h(x+h-3)(x-3)} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+x h+7 x-3 x-3 h-21-\left(x^{2}+x h-3 x+7 x+7 h-21\right)}{h(x+h-3)(x-3)} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+x h+7 x-3 x-3 h-21-x^{2}-x h+3 x-7 x-7 h+21}{h(x+h-3)(x-3)}=\lim _{h \rightarrow 0} \frac{-10 h)}{h(x+h-3)(x-3)} \\
& =\lim _{h \rightarrow 0} \frac{-10}{(x+h-3)(x-3)} \stackrel{\text { DSP }}{=} \frac{-10}{(x-3)(x-3)}=\frac{-10}{(x-3)^{2}}
\end{aligned}
$$

4. [10 Points] Suppose that $f(x)=x^{2}-7 x-12$. Write the equation of the tangent line to the curve $y=f(x)$ when $x=-2 .^{* *}$ Use the limit definition of the derivative when computing the derivative.**
Solution. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-7(x+h)-12-\left(x^{2}-7 x-12\right)}{h}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-7 x-7 h-12-x^{2}+7 x+12}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-7 h}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h-7 \stackrel{\text { DSP }}{=} 2 x-7 .
\end{aligned}
$$

Thus, the slope of the tangent line is $f^{\prime}(-2)=2(-2)-7=-11$.
We also have $f(-2)=(-2)^{2}-7(-2)-12=4+14-12=6$, so the point is $(-2,6)$. Therefore, the tangent line is

$$
y-6=-11(x-(-2)), \quad \text { i.e., } \quad y=-11 x-16
$$

5. [12 Points] Suppose that f and g are functions, and

- $\lim _{x \rightarrow 7} f(x)=5$
- $\lim _{x \rightarrow 7} g(x)=-3$
- $f(5)=7$
- $g(7)=\lim _{x \rightarrow 7} g(x)$.

Evaluate the following quantities and fully justify your answers. Do not just put down a value:
(a) $\lim _{x \rightarrow 7} \sqrt{3 f(x)-7 g(x)}=$
(b) $\lim _{x \rightarrow 7} \frac{f(x)}{1-x}=$
(c) $g \circ f(5)=$

Solutions. (a): By the limit laws, $\lim _{x \rightarrow 7} \sqrt{3 f(x)-7 g(x)}=\sqrt{\lim _{x \rightarrow 7} 3 f(x)-7 g(x)}$

$$
=\sqrt{3 \lim _{x \rightarrow 7} f(x)-7 \lim _{x \rightarrow 7} g(x)}=\sqrt{3(5)-7(-3)}=\sqrt{15+21}=\sqrt{36}=6
$$

(b): By the limit laws, $\lim _{x \rightarrow 7} \frac{f(x)}{1-x}=\frac{\lim _{x \rightarrow 7} f(x)}{\lim _{x \rightarrow 7} 1-x}=\frac{5}{1-7}=-\frac{5}{6}$
(d): By the stated facts: $g \circ f(5)=g(f(5))=g(7)=\lim _{x \rightarrow 7} g(x) \boxed{-3}$
6. [20 Points] Consider the function defined by

$$
f(x)= \begin{cases}\sqrt{x-3} & \text { if } x>3 \\ 1 & \text { if } x=3 \\ 6-2 x & \text { if } 0<x<3 \\ 16-x^{2} & \text { if }-4<x \leq 0 \\ \frac{1}{x+4} & \text { if } x<-4\end{cases}
$$

(a) Carefully sketch the graph of $f(x)$.
(b) State the Domain of the function $f(x)$.
(c) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow 0^{+}} f(x)= \\ \lim _{x \rightarrow 0^{-}} f(x)= \\ \lim _{x \rightarrow 0} f(x)=\end{array} \quad\right.$ (d) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow 3^{+}} f(x)= \\ \lim _{x \rightarrow 3^{-}} f(x)= \\ \lim _{x \rightarrow 3} f(x)=\end{array}\right.$
(e) Compute $\left\{\begin{array}{l}\lim _{x \rightarrow-4^{+}} f(x)= \\ \lim _{x \rightarrow-4^{-}} f(x)= \\ \lim _{x \rightarrow-4} f(x)=\end{array}\right.$

Solutions. (a) Using translation/scaling for the various pieces, and then putting them together, here's the graph (axes not to scale, to fit better on the page)

(b): each of the functions is defined on the portion assigned to it, but $x=-4$ is not in any of the portions. So the domain is all real numbers except -4 , or if you prefer, $\{x \mid x \neq-4\}$
(c): $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 6-2 x \stackrel{\text { DSP }}{=} 6$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 16-x^{2} \stackrel{\text { DSP }}{=} 16$
$\lim _{x \rightarrow 0} f(x)$ DNE because RHL $\neq \mathrm{LHL}$
(d): $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \sqrt{x-3} \stackrel{\text { DSP }}{=} 0$
$\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} 6-2 x \stackrel{\text { DSP }}{=} 0$
$\lim _{x \rightarrow 3} f(x)=0$ because RHL $=\mathrm{LHL}=0$
(e): $\lim _{x \rightarrow-4^{+}} f(x)=\lim _{x \rightarrow-4^{+}} 16-x^{2} \stackrel{\text { DSP }}{=} 16-16=0$
$\lim _{x \rightarrow-4^{-}} f(x)=\lim _{x \rightarrow-4^{-}} \frac{1}{x+4}=\frac{1}{0-}=-\infty$
$\lim _{x \rightarrow-4} f(x)$ DNE because RHL \neq LHL

