1. **(36 points)** Compute the following derivatives by any legal method.

 (a) \(f'(x) \), where \(f(x) = \tan(5x^2 - 8) \).

 (b) \(\frac{d}{dt}(1 - t^4\sqrt{\cos t}) \).

 (c) \(y' \), where \(xy + y^3 = 4x^2 \).

 (d) \(g'(x) \), where \(g(x) = \frac{x^2 + 3x}{x + 1} \).

 (e) \(h''(x) \), where \(h(x) = \frac{x^3 + 4}{\sqrt{x}} \).

2. **(14 points)** Suppose \(f, g, h \) are functions such that

 \[f(2) = 4, \quad f'(2) = -3, \quad g(1) = 2, \quad g'(1) = 5, \quad h(1) = 7, \quad h'(1) = -2. \]

 Let \(F(x) = f(g(x)) \) and \(G(x) = g(x) \cdot h(x) \). Compute \(F'(1) \) and \(G'(1) \).

3. **(20 points)** A state trooper is parked on a North-South road 60 meters from where it intersects an East-West road. Meanwhile, a truck is driving along the East-West road. At the moment the truck is 80 meters past the intersection, the trooper (using his radar gun) sees that the truck’s distance from him is increasing at 12 m/sec. How fast is the truck actually going at that time?

4. **(18 points)** Let \(g(x) = \frac{x + 4}{x^2 + 9} \).

 Find the absolute minimum and absolute maximum values of \(g \) on the interval \([-4, 4]\).

5. **(12 points)** Let \(f(x) = \sin^3(4x) + \sec(4x) - 8\sin(2x) \). Compute \(f'(\frac{\pi}{12}) \). Simplify.