Math 111-01, Fall 2022

Professor Rob Benedetto

Practice Test A for Midterm Exam 2

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (36 points) Compute the following derivatives by any legal method.

(a). f'(x), where $f(x) = \tan(5x^2 - 8)$. (b). $\frac{d}{dt} \left((1 - t^4) \sqrt{\cos t} \right)$. (c). y', where $xy + y^3 = 4x^2$. (d). g'(x), where $g(x) = \frac{x^2 + 3x}{x + 1}$. (e). h''(x), where $h(x) = \frac{x^3 + 4}{\sqrt{x}}$.

2. (14 points) Suppose f, g, h are functions such that

$$f(2) = 4$$
, $f'(2) = -3$, $g(1) = 2$, $g'(1) = 5$, $h(1) = 7$, $h'(1) = -2$.
Let $F(x) = f(g(x))$ and $G(x) = g(x) \cdot h(x)$. Compute $F'(1)$ and $G'(1)$.

3. (20 points) A state trooper is parked on a North-South road 60 meters from where it intersects an East-West road. Meanwhile, a truck is driving along the East-West road. At the moment the truck is 80 meters past the intersection, the trooper (using his radar gun) sees that the truck's distance from him is increasing at 12 m/sec. How fast is the truck actually going at that time?

4. (18 points) Let $g(x) = \frac{x+4}{x^2+9}$. Find the absolute minimum and absolute maximum values of g on the interval [-4, 4].

5. (12 points) Let
$$f(x) = \sin^3(4x) + \sec(4x) - 8\sin(2x)$$
. Compute $f'\left(\frac{\pi}{12}\right)$. Simplify.