Practice Test A for Midterm Exam 2

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (36 points) Compute the following derivatives by any legal method.
(a). $f^{\prime}(x)$, where $f(x)=\tan \left(5 x^{2}-8\right)$.
(b). $\frac{d}{d t}\left(\left(1-t^{4}\right) \sqrt{\cos t}\right)$.
(c). y^{\prime}, where $x y+y^{3}=4 x^{2}$.
(d). $g^{\prime}(x)$, where $g(x)=\frac{x^{2}+3 x}{x+1}$.
(e). $h^{\prime \prime}(x)$, where $h(x)=\frac{x^{3}+4}{\sqrt{x}}$.
2. (14 points) Suppose f, g, h are functions such that

$$
f(2)=4, \quad f^{\prime}(2)=-3, \quad g(1)=2, \quad g^{\prime}(1)=5, \quad h(1)=7, \quad h^{\prime}(1)=-2
$$

Let $F(x)=f(g(x))$ and $G(x)=g(x) \cdot h(x)$. Compute $F^{\prime}(1)$ and $G^{\prime}(1)$.
3. (20 points) A state trooper is parked on a North-South road 60 meters from where it intersects an East-West road. Meanwhile, a truck is driving along the East-West road. At the moment the truck is 80 meters past the intersection, the trooper (using his radar gun) sees that the truck's distance from him is increasing at $12 \mathrm{~m} / \mathrm{sec}$. How fast is the truck actually going at that time?
4. (18 points) Let $g(x)=\frac{x+4}{x^{2}+9}$.

Find the absolute minimum and absolute maximum values of g on the interval $[-4,4]$.
5. (12 points) Let $f(x)=\sin ^{3}(4 x)+\sec (4 x)-8 \sin (2 x)$. Compute $f^{\prime}\left(\frac{\pi}{12}\right)$. Simplify.

