Solutions to Practice Test A for Midterm Exam 2

1. (36 points) Compute the following derivatives by any legal method.
(a). $f^{\prime}(x)$, where $f(x)=\tan \left(5 x^{2}-8\right)$.
(b). $\frac{d}{d t}\left(\left(1-t^{4}\right) \sqrt{\cos t}\right)$.
(c). y^{\prime}, where $x y+y^{3}=4 x^{2}$.
(d). $g^{\prime}(x)$, where $g(x)=\frac{x^{2}+3 x}{x+1}$.
(e). $h^{\prime \prime}(x)$, where $h(x)=\frac{x^{3}+4}{\sqrt{x}}$.

Solutions. (a) $f^{\prime}(x)=\sec ^{2}\left(5 x^{2}-8\right) \cdot 10 x=10 x \sec ^{2}\left(5 x^{2}-8\right)$
(b) The derivative is $-4 t^{3}(\cos t)^{1 / 2}+\left(1-t^{4}\right) \cdot \frac{1}{2} \cdot(\cos t)^{-1 / 2} \cdot(-\sin t)$

$$
=-(\cos t)^{-1 / 2}\left[4 t^{3} \cos t+\frac{1}{2}\left(1-t^{4}\right) \sin t\right]
$$

(c) Implicit Diff: $y+x y^{\prime}+3 y^{2} y^{\prime}=8 x$, so $\left(x+3 y^{2}\right) y$; $=8 x-y$, so $y^{\prime}=\frac{8 x-y}{x+3 y^{2}}$
(d) $g^{\prime}(x)=\frac{(2 x+3)(x+1)-\left(x^{2}+3 x\right) \cdot 1}{(x+1)^{2}}=\frac{2 x^{2}+5 x+3-x^{2}-3 x}{(x+1)^{2}}=\frac{x^{2}+2 x+3}{(x+1)^{2}}$
(e) We have $h(x)=x^{-1 / 2}\left(x^{3}+4\right)=x^{5 / 2}+4 x^{-1 / 2}$, so $h^{\prime}(x)=\frac{5}{2} x^{3 / 2}-2 x^{-3 / 2}$, and hence $h^{\prime \prime}(x)=\frac{15}{4} x^{1 / 2}+3 x^{-5 / 2}$
2. (14 points) Suppose f, g, h are functions such that

$$
f(2)=4, \quad f^{\prime}(2)=-3, \quad g(1)=2, \quad g^{\prime}(1)=5, \quad h(1)=7, \quad h^{\prime}(1)=-2 .
$$

Let $F(x)=f(g(x))$ and $G(x)=g(x) \cdot h(x)$. Compute $F^{\prime}(1)$ and $G^{\prime}(1)$.
Solutions. $F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$, so $F^{\prime}(1)=f^{\prime}(g(1)) \cdot g^{\prime}(1)=f^{\prime}(2) \cdot 5=(-3) \cdot 5=-15$
$G^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$, so $G^{\prime}(1)=g^{\prime}(1) h(1)+g(1) h^{\prime}(1)=(5)(7)+(2)(-2)=35-4=31$
3. (20 points) A state trooper is parked on a North-South road 60 meters from where it intersects an East-West road. Meanwhile, a truck is driving along the East-West road. At the moment the truck is 80 meters past the intersection, the trooper (using his radar gun) sees that the truck's distance from him is increasing at $12 \mathrm{~m} / \mathrm{sec}$. How fast is the truck actually going at that time?
Solution. Here's the Picture:

Variables:

$x=$ East-West distance from truck to point on road, in m
$h=$ diagonal distance from trooper to truck, in m
(And $t=$ time, in sec)
Main Equation: $x^{2}+60^{2}=h^{2}$
Differentiate (implicitly, w.r.t. time): $2 x \frac{d x}{d t}=2 h \frac{d h}{d t}$

Use key moment info:

At the key moment, we have $x=80 \mathrm{~m}$ and we are told that $\frac{d h}{d t}=12 \mathrm{~m} / \mathrm{sec}$
Also, plugging $x=80$ into the original equation gives $80^{2}+60^{2}=h^{2}$,
i.e., $h^{2}=6400+3600$, i.e., $h^{2}=10000$, so $h= \pm 100$. Must be $h=100 \mathrm{~m}$.

Plugging these values into the derivative equation above,
we have $2(80) \frac{d x}{d t}=2(100)(12)$, i.e., $\frac{d x}{d t}=\frac{1200}{80}=\frac{30}{2}=15 \mathrm{~m} / \mathrm{sec}$
4. (18 points) Let $g(x)=\frac{x+4}{x^{2}+9}$.

Find the absolute minimum and absolute maximum values of g on the interval $[-4,4]$.
Solution. (By Closed Interval Method):
$g^{\prime}(x)=\frac{1\left(x^{2}+9\right)-(x+4)(2 x)}{\left(x^{2}+9\right)^{2}}=\frac{x^{2}+9-2 x^{2}-8 x}{\left(x^{2}+9\right)^{2}}=\frac{-x^{2}-8 x+9}{\left(x^{2}+9\right)^{2}}=\frac{-(x+9)(x-1)}{\left(x^{2}+9\right)^{2}}$,
which is always defined.
Solving $g^{\prime}=0$ gives $x=-9,1$, but -9 is not in the interval.
So the only critical number is $x=1$. Testing it and endpoints:

$$
g(-4)=\frac{0}{16+9}=0, \quad g(1)=\frac{5}{1+9}=\frac{1}{2}, \quad g(4)=\frac{8}{16+9}=\frac{8}{25}
$$

So the absolute maximum is $\frac{1}{2}$ and the absolute minimum is 0
5. (12 points) Let $f(x)=\sin ^{3}(4 x)+\sec (4 x)-8 \sin (2 x)$. Compute $f^{\prime}\left(\frac{\pi}{12}\right)$. Simplify.

Solution. $f^{\prime}(x)=3 \sin ^{2}(4 x) \cdot \cos (4 x) \cdot 4+\sec (4 x) \tan (4 x) \cdot 4-8 \cos (2 x) \cdot 2$

$$
=12 \sin ^{2}(4 x) \cos (4 x)+4 \sec (4 x) \tan (4 x)-16 \cos (2 x)
$$

So $f^{\prime}\left(\frac{\pi}{12}\right)=12 \sin ^{2}\left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)+\frac{4 \sin \left(\frac{\pi}{3}\right)}{\cos ^{2}\left(\frac{\pi}{3}\right)}-16 \cos \left(\frac{\pi}{6}\right)=12\left(\frac{\sqrt{3}}{2}\right)^{2} \cdot \frac{1}{2}+\frac{4(\sqrt{3} / 2)}{(1 / 2)^{2}}-16\left(\frac{\sqrt{3}}{2}\right)$
$=6\left(\frac{3}{4}\right)+8 \sqrt{3}-8 \sqrt{3}=\frac{9}{2}$

