Practice Test B for Midterm Exam 2

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (25 points) Compute the following derivatives by any legal method. Simplify when asked to do so.
(a). Compute $f^{\prime}(x)$, where $f(x)=x^{2} \sec (3 x-5)$. Simplify your answer.
(b). Compute $g^{\prime \prime}(x)$ (the second derivative), where $g(x)=\frac{x^{2}-4 x+3}{\sqrt{x}}$. Simplify your answer.
(c). Compute $h(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{1+x}}$. (Do not simplify your answer.)
(d). Compute $g^{\prime}(x)$, where $g(x)=\left(\frac{1}{x^{3}}+\pi\right)^{4} \cdot\left(x^{4}-\frac{1}{x^{7}}\right)^{-5} \quad$ (Do not simplify your answer.)
2. ($\mathbf{1 5}$ points) Find the locations of the absolute maximum and absolute minimum value(s) of the function

$$
F(x)=(x-1)^{2}(2 x-10)^{2} \quad \text { on the interval } \quad[0,4] .
$$

3. (18 points) The top of a 10 foot ladder is sliding down a vertical wall at the rate of 1 foot per second. Consider the angle formed by the bottom of the ladder and the ground. How fast is this angle changing when the top of the ladder is 6 feet above the ground?
4. (14 points) Consider the equation: $\quad x y^{3}+y \cos x=3+y^{2} \sin x$

Find the equation of the tangent line to this curve at the point $(0,3)$.
5. (12 points) Suppose $f(x)$ is a function with the property that

$$
f(2)=5, \quad f^{\prime}(2)=-1, \quad f(4)=3, \quad \text { and } \quad f^{\prime}(4)=2 .
$$

Let $g(x)=f\left(x^{2}\right)$ and $h(x)=(f(x))^{2}$. Compute $g^{\prime}(2)$ and $h^{\prime}(2)$.

