Solutions to Practice Test B for Midterm Exam 2

1. (25 points) Compute the following derivatives by any legal method. Simplify when asked to do so.
(a). Compute $f^{\prime}(x)$, where $f(x)=x^{2} \sec (3 x-5)$. Simplify your answer.
(b). Compute $g^{\prime \prime}(x)$ (the second derivative), where $g(x)=\frac{x^{2}-4 x+3}{\sqrt{x}}$. Simplify your answer.
(c). Compute $h(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\frac{1}{1+\sqrt{x}}+\frac{1}{\sqrt{1+x}}$. (Do not simplify your answer.)
(d). Compute $g^{\prime}(x)$, where $g(x)=\left(\frac{1}{x^{3}}+\pi\right)^{4} \cdot\left(x^{4}-\frac{1}{x^{7}}\right)^{-5} \quad$ (Do not simplify your answer.)

Solutions. (a) $f^{\prime}(x)=2 x \sec (3 x-5)+x^{2} \sec (3 x-5) \tan (3 x-5) \cdot 3=x \sec (3 x-5)[2+3 x \tan (3 x-5)]$
(b) $g(x)=x^{3 / 2}-4 x^{1 / 2}+3 x^{-1 / 2}$, so $g^{\prime}(x)=\frac{3}{2} x^{1 / 2}-2 x^{-1 / 2}-\frac{3}{2} x^{-3 / 2}$, and hence $g^{\prime \prime}(x)=\frac{3}{4} x^{-1 / 2}+x^{-3 / 2}+\frac{9}{4} x^{-5 / 2}$
(c) $h(x)=x^{1 / 2}+x^{-1 / 2}+\left(1+x^{1 / 2}\right)^{-1}+(1+x)^{-1 / 2}$, so $h^{\prime}(x)=\frac{1}{2} x^{-1 / 2}-\frac{1}{2} x^{-3 / 2}-\left(1+x^{1 / 2}\right)^{-2} \cdot \frac{1}{2} x^{-1 / 2}-\frac{1}{2}(1+x)^{-3 / 2}$
(d) We have $g(x)=\left(x^{-3}+\pi\right)^{4}\left(x^{4}-x^{-7}\right)^{-5}$, so

$$
g^{\prime}(x)=4\left(x^{-3}+\pi\right)^{3} \cdot\left(-3 x^{-4}\right) \cdot\left(x^{4}-x^{-7}\right)^{-5}+\left(x^{-3}+\pi\right)^{4} \cdot(-5)\left(x^{4}-x^{-7}\right)^{-6} \cdot\left(4 x^{3}+7 x^{-8}\right)
$$

2. (15 points) Find the locations of the absolute maximum and absolute minimum value(s) of the function

$$
F(x)=(x-1)^{2}(2 x-10)^{2} \quad \text { on the interval } \quad[0,4]
$$

Solutions. (By Closed Interval Method):
$F^{\prime}(x)=2(x-1) \cdot 1(2 x-10)^{2}+(x-1)^{2} \cdot 2(2 x-10) \cdot 2=2(x-1)(2 x-10)[(2 x-10)+2(x-1)]$
$=2(x-1)(2 x-10)[4 x-12]=16(x-1)(x-5)(x-3)$,
which is always defined.
Solving $F^{\prime}=0$ gives $x=1,3,5$, but 5 is not in the interval.
So the only critical numbers are $x=1,3$. Testing them and endpoints:

$$
F(0)=(-1)^{2}(-10)^{2}=100, \quad F(1)=0, \quad F(3)=2^{2}(-4)^{2}=64, \quad F(4)=3^{2}(-2)^{2}=36
$$

The maximum value is 100 , and the minimum value is 0 .
So the absolute max occurs at $x=0$ and the absolute min occurs at $x=1$
3. (18 points) The top of a 10 foot ladder is sliding down a vertical wall at the rate of 1 foot per second. Consider the angle formed by the bottom of the ladder and the ground. How fast is this angle changing when the top of the ladder is 6 feet above the ground?

Solution. Here's the Picture:

Variables:

$x=$ distance from bottom of ladder to wall, in ft
$y=$ distance from top of ladder to floor, in ft
$\theta=$ angle of ladder with floor, in radians
(And $t=$ time, in sec)
Main Equation: $\sin \theta=\frac{y}{10}, \quad$ i.e., $\quad 10 \sin \theta=y$
Differentiate (implicitly, w.r.t. time): $10 \cos \theta \frac{d \theta}{d t}=\frac{d y}{d t}$

Use key moment info:

At the key moment, we have $y=6 \mathrm{ft}$ and we are told that $\frac{d y}{d t}=-1 \mathrm{ft} / \mathrm{sec}$
Also, when $y=6$, we have $x=8$, because $x^{2}+y^{2}=10^{2}$, so $x^{2}+36=100$, i.e. $x^{2}=64$.
Thus, at the key moment, we have $\cos \theta=\frac{\text { adj }}{\text { hyp }}=\frac{x}{10}=\frac{8}{10}$.
Plugging these values into the derivative equation above,
we have $10 \cdot\left(\frac{8}{10}\right) \frac{d \theta}{d t}=-1$, so $\frac{d \theta}{d t}=-\frac{1}{8}$.
That is, the angle is decreasing at $\frac{1}{8} \mathrm{rad} / \mathrm{sec}$
4. (14 points) Consider the equation: $x y^{3}+y \cos x=3+y^{2} \sin x$

Find the equation of the tangent line to this curve at the point $(0,3)$.
Solution. Implicit Diff: $y^{3}+3 x y^{2} \frac{d y}{d x}+\frac{d y}{d x} \cos x-y \sin x=2 y \frac{d y}{d x} \sin x+y^{2} \cos x$,
so at the point $(x, y)=(0,3)$, we have $3^{3}+0+\frac{d y}{d x} \cos (0)-3 \sin (0)=2(3) \frac{d y}{d x} \sin (0)+3^{2} \cos (0)$,
i.e., $27+\frac{d y}{d x}=9$, i.e., $\frac{d y}{d x}=-18$ is the slope of the tangent line.

So the line is $y-3=-18(x-0)$, i.e., $y=-18 x+3$
5. (12 points) Suppose $f(x)$ is a function with the property that

$$
f(2)=5, \quad f^{\prime}(2)=-1, \quad f(4)=3, \quad \text { and } \quad f^{\prime}(4)=2 .
$$

Let $g(x)=f\left(x^{2}\right)$ and $h(x)=(f(x))^{2}$. Compute $g^{\prime}(2)$ and $h^{\prime}(2)$.
Solution. $g^{\prime}(x)=f^{\prime}\left(x^{2}\right) \cdot 2 x$, so $g^{\prime}(2)=f^{\prime}(4) \cdot(4)=(2)(4)=8$
$h^{\prime}(2)=2(f(2)) \cdot f^{\prime}(2)=2(5)(-1)=-10$

