Practice Test A for Midterm Exam 3

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (20 points) You need to construct a box with a square base with a fixed volume of 24 cubic feet. The material for the bottom and top costs $\$ 3$ per square foot, and the material for the sides costs $\$ 1$ per square foot. What are the dimensions that minimize the cost required to build such a box? What is that minimum cost?
2. (25 points) Compute $\int_{1}^{3} x^{2}-3 x d x$ using each of the following two different methods:
(a) The Fundamental Theorem of Calculus.
(b) Riemann Sums and the limit definition of the definite integral.

Note: I will not ask you to do a full-scale integral via the limit definition on a 50 minute exam, but it is still good practice, so I've left it on this practice exam. -NP (2023)
3. (30 points) Let $f(x)=\frac{-x^{2}+x+2}{x^{2}-2 x+1}=\frac{-x^{2}+x+2}{(x-1)^{2}}$.

For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve $y=f(x)$.

You may take my word for it that:

$$
f^{\prime}(x)=\frac{x-5}{(x-1)^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{-2 x+14}{(x-1)^{4}}
$$

4. (10 points) Compute the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}-x+5}{3 x^{7}+x^{6}-2022}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5 x}}{6 x+7}$
5. (15 points) Compute the following definite and indefinite integrals.
(a) $\int \frac{y^{2}-4 y+1}{\sqrt{y}} d y$
(b) $\int_{-\pi / 4}^{5 \pi / 6} 3 x+\cos x d x$
