Solutions to Practice Test A for Midterm Exam 3

1. (20 points) You need to construct a box with a square base with a fixed volume of 24 cubic feet. The material for the bottom and top costs $\$ 3$ per square foot, and the material for the sides costs $\$ 1$ per square foot. What are the dimensions that minimize the cost required to build such a box? What is that minimum cost?
Solution. Here's the diagram:

The area of the base is x^{2}, so the base costs $\$ 3 x^{2}$.
Similarly, the top also costs $\$ 3 x^{2}$. So the base and top together cost $\$ 6 x^{2}$.
Each of the four sides has area $x y$, and so costs $\$ x y$. Together, the four sides cost $\$ 4 x y$.
So the total cost of the box (in dollars) is $6 x^{2}+4 x y$
The volume of the box is $x^{2} y$, which we set equal to 24 . Solving for y gives $y=24 x^{-2}$.
So the cost of the box is $C(x)=6 x^{2}+96 x^{-1}$.
The common sense bounds say $x>0$ [note that $x=0$ is impossible because $x^{2} y=24$]. [And $y>0$ then gives $24 / x^{2}>0$, which tells us nothing new.]
So we must minimize $C(x)=6 x^{2}+96 x^{-1}$ on the domain $(0, \infty)$.
Differentiate: $C^{\prime}(x)=12 x-96 x^{-2}$, which is defined everywhere on $(0, \infty)$.
Solving $C^{\prime}=0$ gives $12 x^{3}=96$, so $x^{3}=8$, so $x=2$ is the only critical number.
Using FDTAE, since $C^{\prime}(x)=12 x^{-2}\left(x^{3}-8\right)$, our C^{\prime} chart is:

x	$(0,2)$	$(2, \infty)$
$C^{\prime}(x)$	-	+
$C(x)$	\searrow	\nearrow

So by FDTAE, C has an absolute minimum at $x=2 \mathrm{ft}$.
That gives $y=24 / 2^{2}=6 \mathrm{ft}$ and $C(2)=6(4)+96 / 2=\$ 72$.
So the best box is $2 \mathrm{ft} \times 2 \mathrm{ft} \times 3 \mathrm{ft}$ and costs $\$ 72$
2. (25 points) Compute $\int_{1}^{3} x^{2}-3 x d x$ using each of the following two different methods:
(a) The Fundamental Theorem of Calculus.
(b) Riemann Sums and the limit definition of the definite integral.

Solution. (a): Let $f(x)=x^{2}-3 x$, and chop the interval [1,3] into n equal-length intervals.
We have $\Delta x=\frac{3-1}{n}=\frac{2}{n}$, and so $x_{i}=1+\frac{2 i}{n}$.
The n-th right-hand Riemann sum is therefore
$R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\sum_{i=1}^{n} f\left(1+\frac{2 i}{n}\right) \cdot \frac{2}{n}=\sum_{i=1}^{n}\left[\left(1+\frac{2 i}{n}\right)^{2}-3\left(1+\frac{2 i}{n}\right)\right] \frac{2}{n}$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left[1+\frac{4 i}{n}+\frac{4 i^{2}}{n^{2}}-3-\frac{6 i}{n}\right] \frac{2}{n}=\sum_{i=1}^{n}\left[-2-\frac{2 i}{n}+\frac{4 i^{2}}{n^{2}}\right] \frac{2}{n} \\
& =-\frac{4}{n} \sum_{i=1}^{n} 1-\frac{4}{n^{2}} \sum_{i=1}^{n} i+\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}=-\frac{4}{n} \cdot n-\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}+\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6} \\
& =-4-2\left(1+\frac{1}{n}\right)+\frac{4}{3}\left(1+\frac{1}{n}\right)\left(2+\frac{1}{n}\right)
\end{aligned}
$$

Thus, $\int_{1}^{3} x^{2}-3 x d x=\lim _{n \rightarrow \infty} R_{n}=-4-2(1)+\frac{4}{3}(1)(2)=-6+\frac{8}{3}=-\frac{10}{3}$
(b): $\int_{1}^{3} x^{2}-3 x d x=\frac{1}{3} x^{3}-\left.\frac{3}{2} x^{2}\right|_{1} ^{3}=\left(\frac{1}{3} \cdot 3^{3}-\frac{3}{2} \cdot 3^{2}\right)-\left(\frac{1}{3} \cdot 1^{3}-\frac{3}{2} \cdot 1^{2}\right)$ $=9-\frac{27}{2}-\frac{1}{3}+\frac{3}{2}=9-12-\frac{1}{3}=-3-\frac{1}{3}=-\frac{10}{3}$
3. (30 points) Let $f(x)=\frac{-x^{2}+x+2}{x^{2}-2 x+1}=\frac{-x^{2}+x+2}{(x-1)^{2}}$.

For this function, discuss domain, vertical and horizontal asymptote(s), interval(s) of increase or decrease, local extreme value(s), concavity, and inflection point(s). Then use this information to present a detailed and labelled sketch of the curve $y=f(x)$.

You may take my word for it that:

$$
f^{\prime}(x)=\frac{x-5}{(x-1)^{3}} \quad \text { and } \quad f^{\prime \prime}(x)=\frac{-2 x+14}{(x-1)^{4}}
$$

Solution.

- Domain: $f(x)$ has domain $\{x \mid x \neq 1\}$
- VA: Vertical asymptote at $x=1$ (because denom=0 there, and nowhere else).
- HA: Horizontal asymptote is $y=-1$ on both sides since $\lim _{x \rightarrow \pm \infty} f(x)=-1$ because

$$
\lim _{x \rightarrow \pm \infty} \frac{-x^{2}+x+2}{x^{2}-2 x+1} \cdot \frac{\left(\frac{1}{x^{2}}\right)}{\left(\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \pm \infty} \frac{-1+\frac{1}{x}+\frac{2}{x^{2}}}{1-\frac{2}{x}+\frac{1}{x^{2}}}=-1
$$

- First Derivative Information:

We know $f^{\prime}(x)=\frac{x-5}{(x-1)^{3}}$. The critical points occur where f^{\prime} is undefined or zero. The former happens when $x=1$, but $x=1$ was not in the domain of the original function, so it isn't technically a critical number. The latter happens when $x=5$. As a result, $x=5$ is the critical number. Our chart for f^{\prime} is:

x	$(-\infty, 1)$	$(1,5)$	$(5, \infty)$
$f^{\prime}(x)$	+	-	+
$f(x)$	\nearrow	\searrow	\nearrow

So f is decreasing on $(1,5)$ and increasing on $(-\infty, 1)$ and $(5, \infty)$
with a local minimum at $x=5$
(Remember that $x=1$ is a vertical asymptote, not a max.)

- Second Derivative Information:

Meanwhile, $f^{\prime \prime}=\frac{-2 x+14}{(x-1)^{4}}$, which is always defined away from the asymptote $x=1$.

We have $f^{\prime \prime}=0$ when $x=7$. Thus, our $f^{\prime \prime}$ chart is

x	$(-\infty, 1)$	$(1,7)$	$(7, \infty)$
$f^{\prime \prime}(x)$	+	+	-
$f(x)$	\bigcup	\bigcup	\bigcap

So f is concave down on $(7, \infty)$ and concave up on $(-\infty, 1)$ and $(1,7)$
with an inflection point at $x=7$
[For graph, see separate PDF.]
4. (10 points) Compute the following limits.
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}-x+5}{3 x^{7}+x^{6}-2022}$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5 x}}{6 x+7}$

Solution. (a) $\lim _{x \rightarrow \infty} \frac{x^{2}-x+5}{3 x^{7}+x^{6}-2022} \cdot \frac{\frac{1}{x^{7}}}{\frac{1}{x^{7}}}=\lim _{x \rightarrow \infty} \frac{x^{-5}-x^{-6}+5 x^{-7}}{3+x^{-1}-2022 x^{-7}}=\frac{0}{3}=0$
(b) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5 x}}{6 x+7} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5 x} \cdot\left(-\sqrt{x^{-2}}\right)}{6+7 x^{-1}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{4+5 x^{-1}}}{6+7 x^{-1}}=\frac{-\sqrt{4}}{6}=-\frac{1}{3}$
5. (15 points) Compute the following definite and indefinite integrals.
(a) $\int \frac{y^{2}-4 y+1}{\sqrt{y}} d y$
(b) $\int_{-\pi / 4}^{5 \pi / 6} 3 x+\cos x d x$

Solution. (a) $\int \frac{y^{2}-4 y+1}{\sqrt{y}} d y=\int y^{3 / 2}-4 y^{1 / 2}+y^{-1 / 2} d y=\frac{2}{5} y^{5 / 2}-\frac{8}{3} y^{3 / 2}+2 y^{1 / 2}+C$
(b) $\int_{-\pi / 4}^{5 \pi / 6} 3 x+\cos x d x=\frac{3}{2} x^{2}+\left.\sin x\right|_{-\pi / 4} ^{5 \pi / 6}=\left(\frac{3}{2}\left(\frac{5 \pi}{6}\right)^{2}+\sin \frac{5 \pi}{6}\right)-\left(\frac{3}{2}\left(-\frac{\pi}{4}\right)^{2}+\sin \left(-\frac{\pi}{4}\right)\right)$ $=\frac{3 \dot{5}^{2} \pi^{2}}{2 \cdot 6^{2}}+\frac{1}{2}-\frac{3 \pi^{2}}{2 \cdot 4^{2}}-\left(-\frac{\sqrt{2}}{2}\right)=\left(\frac{25}{24}-\frac{3}{32}\right) \pi^{2}+\frac{1+\sqrt{2}}{2}$

