Practice Test B for Midterm Exam 3

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (10 points) Find a function $f(x)$ such that $f(1)=3, f^{\prime}(1)=5$, and $f^{\prime \prime}(x)=12 x^{2}+12 x$.
2. (25 points) Let $f(x)=\frac{2 x^{3}+45 x^{2}+315 x+600}{x^{3}}$. Take my word for it that

$$
f^{\prime}(x)=\frac{-45(x+4)(x+10)}{x^{4}}, \quad \text { and } \quad f^{\prime \prime}(x)=\frac{90(x+5)(x+16)}{x^{5}} .
$$

Sketch the graph of $y=f(x)$, clearly indicating horizontal and vertical asymptotes, local extrema, inflection points, and intervals of increase and decrease and of concavity. You do not need to indicate locations of intercepts or y-coordinates of extrema or inflection points.
Also, please do NOT try to draw your graph to scale.
3. (15 points) Let $g(x)=4 x^{5}-5 x^{4}-40 x^{3}$. Find all critical points of g in $(-\infty, \infty)$, and classify each as a local maximum, local minimum, or neither.
4. (25 points) A rectangular poster is to contain $50 \mathrm{in}^{2}$ of printed matter with margins of 4 inches at each of the top and bottom, and margins of 2 inches on each side. What are the height and width of the poster fitting those requirements that has the smallest possible area?
5. (10 points) Here are some values of a certain continuous function $h(x)$:

x	-4	-3	-2	-1	0	1	2	3	4	5	6
$h(x)$	3	1	0	-1	-2	-2	0	1	5	8	7

Estimate $\int_{-3}^{5} h(x) d x$ using four approximating rectangles of equal width and right endpoints. That is, compute R_{4}.
6. (15 points) Compute the following definite and indefinite integrals.
(a) $\int(5 \sec t+7 \tan t) \sec t d t$
(b) $\int_{-1}^{2} x^{3}(x+3)^{2} d x$

