Math 111-01

Gratefully borrowed from Professor Rob Benedetto

Practice Test B for Midterm Exam 3

Instructions: This optional exam is for practice, to give you an idea of what our in-class midterm exam will be like. I'd recommend that you try taking it in exam conditions: 50 minutes, closed-book.

1. (10 points) Find a function f(x) such that f(1) = 3, f'(1) = 5, and $f''(x) = 12x^2 + 12x$.

2. (25 points) Let
$$f(x) = \frac{2x^3 + 45x^2 + 315x + 600}{x^3}$$
. Take my word for it that

$$f'(x) = \frac{-45(x+4)(x+10)}{x^4}$$
, and $f''(x) = \frac{90(x+5)(x+16)}{x^5}$

Sketch the graph of y = f(x), clearly indicating **horizontal and vertical asymptotes**, local extrema, inflection points, and intervals of increase and decrease and of concavity. You do **not** need to indicate locations of intercepts or y-coordinates of extrema or inflection points.

Also, please do **NOT** try to draw your graph to scale.

3. (15 points) Let $g(x) = 4x^5 - 5x^4 - 40x^3$. Find all critical points of g in $(-\infty, \infty)$, and classify each as a local maximum, local minimum, or neither.

4. (25 points) A rectangular poster is to contain 50 in^2 of printed matter with margins of 4 inches at each of the top and bottom, and margins of 2 inches on each side. What are the height and width of the poster fitting those requirements that has the smallest possible area?

5. (10 points) Here are some values of a certain continuous function h(x):

x	-4	-3	-2	-1	0	1	2	3	4	5	6
h(x)	3	1	0	-1	-2	-2	0	1	5	8	7

Estimate $\int_{-3}^{5} h(x) dx$ using **four** approximating rectangles of equal width and **right** endpoints. That is, compute R_4 .

6. (15 points) Compute the following definite and indefinite integrals.

(a)
$$\int (5 \sec t + 7 \tan t) \sec t \, dt$$
 (b) $\int_{-1}^{2} x^3 (x+3)^2 \, dx$