Solutions to Practice Test B for Midterm Exam 3

1. (10 points) Find a function $f(x)$ such that $f(1)=3, f^{\prime}(1)=5$, and $f^{\prime \prime}(x)=12 x^{2}+12 x$.

Solution. Antidifferentiating $f^{\prime \prime}(x)=12 x^{2}+12 x$ gives $f^{\prime}(x)=4 x^{3}+6 x^{2}+C$, for some constant C.
But $5=f^{\prime}(1)=4+6+C$, and hence $C=-5$.
That is, $f^{\prime}(x)=4 x^{3}+6 x^{2}-5$.
Antidifferentiating again, $f(x)=x^{4}+2 x^{3}-5 x+K$, for some constant K.
But $3=f(1)=1+2-5+K$, and hence $K=5$. Thus, $f(x)=x^{4}+2 x^{3}-5 x+5$
2. (25 points) Let $f(x)=\frac{2 x^{3}+45 x^{2}+315 x+600}{x^{3}}$. Take my word for it that

$$
f^{\prime}(x)=\frac{-45(x+4)(x+10)}{x^{4}}, \quad \text { and } \quad f^{\prime \prime}(x)=\frac{90(x+5)(x+16)}{x^{5}} .
$$

Sketch the graph of $y=f(x)$, clearly indicating horizontal and vertical asymptotes, local extrema, inflection points, and intervals of increase and decrease and of concavity.
You do not need to indicate locations of intercepts or y-coordinates of extrema or inflection points.
Solution. The vertical asymptotes occur when we divide by zero, i.e., at $x=0$ [f is defined and continuous everywhere else.]

For the horizontal asymptotes, we compute
$\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 2+\frac{45}{x}+\frac{315}{x^{2}}+\frac{600}{x^{3}}=2$, and $\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 2+\frac{45}{x}+\frac{315}{x^{2}}+\frac{600}{x^{3}}=2$.
So $y=2$ is a horizontal asymptote on both sides
Meanwhile, f^{\prime} is defined everywhere except at the vertical asymptote $x=0$. Moreover, $f^{\prime}(x)=0$ exactly at $x=-4$ and $x=-10$, so these are the only critical points. Our f^{\prime} chart is:

x	$(-\infty,-10)$	$(-10,-4)$	$(-4,0)$	$(0, \infty)$
$f^{\prime}(x)$	-	+	-	-
$f(x)$	\searrow	\nearrow	\searrow	\searrow

There is a local minimum at $x=-10$ and a local maximum at $x=-4$
Turning to the second derivative, we see that $f^{\prime \prime}$ is also defined everywhere except the asymptote $x=0$; it is zero exactly at $x=-16$ and $x=-5$. The $f^{\prime \prime}$ chart is:

x	$(-\infty,-16)$	$(-16,-5)$	$(-5,0)$	$(0, \infty)$
$f^{\prime}(x)$	-	+	-	+
$f(x)$	\cap	\cup	\cap	\bigcup

There are inflection points at $x=-16$ and $x=-5$ (Note that $x=0$ is an asymptote, not an inflection point.)
See separate PDF for a sketch of the graph.
3. (15 points) Let $g(x)=4 x^{5}-5 x^{4}-40 x^{3}$. Find all critical points of g in $(-\infty, \infty)$, and classify each as a local maximum, local minimum, or neither.
Solution. We compute $g^{\prime}(x)=20 x^{4}-20 x^{3}-120 x^{2}=20 x^{2}\left(x^{2}-x-6\right)=20 x^{2}(x-3)(x+2)$, which is always defined.

Setting $g^{\prime}=0$ gives $x=-2,0,3$ as the critical points. Our g^{\prime} chart is then

x	$(-\infty,-2)$	$(-2,0)$	$(0,3)$	$(3, \infty)$
$g^{\prime}(x)$	+	-	-	+
$g(x)$	\nearrow	\searrow	\searrow	\nearrow

Thus, by the First Derivative Test, g has a
local maximum at $x=-2$, a local minimum at $x=3$, and neither at $x=0$
4. (25 points) A rectangular poster is to contain $50 \mathrm{in}^{2}$ of printed matter with margins of 4 inches at each of the top and bottom, and margins of 2 inches on each side. What are the height and width of the poster fitting those requirements that has the smallest possible area?
Solution. Here's the diagram:

The printed matter inside the poster is a rectangle; call this smaller rectangle's width x and its height y. Taking the margins into account, the full poster has width $x+4$ and height $y+8$.
So the printed area is $50=x y$, which means $y=50 / x$.
Meanwhile, the full poster has area $(x+4)(y+8)=(x+4)(50 / x+8)=8 x+82+200 / x$.
We have $x>0$ and $y>0$, which gives just $x>0$. [Note that $x=0$ is impossible to get $x y=50$. And $y>0$ gives only $50 / x>0$, which is the same as $x>0$.]
So we must minimize $f(x)=8 x+82+200 x^{-1}$ on $(0, \infty)$.
We compute $f^{\prime}(x)=8-200 x^{-2} 2$, which is always defined on the original domain.
Setting $f^{\prime}(x)=0$ gives $8 x^{2}=200$, so $x^{2}=25$, and so $x= \pm 5$; but $-5 \notin(0, \infty)$, meaning that the only critical point is $x=5$. Our f^{\prime} chart is:

x	$(0,5)$	$(5, \infty)$
$f^{\prime}(x)$	-	+
$f(x)$	\searrow	\nearrow

So by FDTAE, f has an absolute minimum at $x=5 \mathrm{in}$. That gives $y=50 / 5=10 \mathrm{in}$.
So the best poster therefore has width $x+4=9 \mathrm{in}$, and height $y+8=18 \mathrm{in}$.
That is, the best poster is 9 in wide by 18 in high
5. (10 points) Here are some values of a certain continuous function $h(x)$:

x	-4	-3	-2	-1	0	1	2	3	4	5	6
$h(x)$	3	1	0	-1	-2	-2	0	1	5	8	7

Estimate $\int_{-3}^{5} h(x) d x$ using four approximating rectangles of equal width and right endpoints. That is, compute R_{4}.

Solution. Cutting the interval $[-3,5]$ into four equal intervals means each interval has width $\Delta x=$ $(5-(-3)) / 4=8 / 4=2$. Thus, the right endpoint Riemann sum for four intervals is $R_{4}=2 \cdot[f(-1)+f(1)+f(3)+f(5)]=2(-1-2+1+8)=2 \cdot 6=12$
6. (15 points) Compute the following definite and indefinite integrals.
(a) $\int(5 \sec t+7 \tan t) \sec t d t$
(b) $\int_{-1}^{2} x^{3}(x+3)^{2} d x$

Solution. (a) $\int(5 \sec t+7 \tan t) \sec t d t=\int 5 \sec ^{2} t+7 \sec t \tan t d t=5 \tan t+7 \sec t+C$
(b) $\int_{-1}^{2} x^{3}(x+3)^{2} d x=\int_{-1}^{2} x^{3}\left(x^{2}+6 x+9\right) d x=\int_{-1}^{2} x^{5}+6 x^{4}+9 x^{3} d x=\frac{1}{6} x^{6}+\frac{6}{5} x^{5}+\left.\frac{9}{4} x^{4}\right|_{-1} ^{2}$ $=\left(\frac{1}{6}(64)+\frac{6}{5}(32)+\frac{9}{4}(16)\right)-\left(\frac{1}{6}-\frac{6}{5}+\frac{9}{4}\right)=\frac{63}{6}+\frac{6 \cdot 33}{5}+\frac{9 \cdot 15}{4}$
[And you can just stop there. But for the record, that is:]

$$
=\frac{21}{2}+\frac{198}{5}+\frac{135}{4}=\frac{210+792+675}{20}=\frac{1677}{20}
$$

