Reading Stewart §3.1,3.3.

1. Use the Closed Interval Method to find the absolute maximum and absolute minimum values of $f(x)=-24+54 x-2 x^{3}$ on the interval $[0,4]$.
2. Use the Closed Interval Method to find the absolute maximum and absolute minimum values of $g(t)=3 t^{4}-4 t^{3}-12 t^{2}+3$ on the interval $[-2,2]$.
3. Use the Closed Interval Method to find the absolute maximum and absolute minimum values of $h(x)=x \sqrt{4-x^{2}}$ on the interval $[-1,2]$.

Note The remaining problems concern topics that we'll discuss more on Monday. Although they are on the problem set this week, I will not put them on Friday's exam, since they were not discussed by Friday's class.
4. Use the given graph of f to find the following.
(a) The open intervals on which f is increasing.
(b) The open intervals on which f is decreasing.
(c) The open intervals on which f is concave upward.
(d) The open intervals on which f is concave downward.
(e) The coordinates of the points of inflection.

5. The graph of the derivative f^{\prime} of a function f is shown.
(a) On what intervals is f increasing or decreasing?
(b) At what values of x does f have a local maximum or minimum?

