Reading Stewart §3.3.

1. Let $f(x)=x^{3}-3 x^{2}-9 x+5$. Find where f is increasing or decreasing, where f is concave up or down, as well as all local maxima, local minima, and inflection points of f. Then use this information to sketch $y=f(x)$.
2. Let $g(x)=x^{4}-8 x^{2}+10$. Find where g is increasing or decreasing, where g is concave up or down, as well as all local maxima, local minima, and inflection points of g. Then use this information to sketch $y=g(x)$.
3. Find all the local maxima and minima of $h(x)=\frac{x^{2}}{x-1}$ using the First Derivative Test.
4. Sketch the graph of a function $F(x)$ that satisfies the following properties:

- $F^{\prime}(-1)=F^{\prime}(2)=F^{\prime}(4)=0$,
- $F^{\prime}(x)>0$ for all x with either $x<-1$ or $2<x<4$,
- $F^{\prime}(x)<0$ for all x with either $-1<x<2$ or $x>4$,
- $F^{\prime \prime}(x)>0$ for all x with $0<x<3$, and
- $F^{\prime \prime}(x)<0$ for all x with $x<0$ or $x>3$.

5. The graph of the derivative f^{\prime} of a continuous function f is shown.
(a) On what intervals is f increasing? Decreasing?
(b) At what values of x does f have a local maximum? Local minimum?
(c) On what intervals is f concave upward? Concave downward?
(d) State the x-coordinate(s) of the point(s) of inflection.
(e) Assuming that $f(0)=0$, sketch a graph of f.

Note Read the problem carefully; in particular, the graph is not the graph of $f(x)$, but rather the graph of $f^{\prime}(x)$. But you are asked about properties of $f(x)$, whose graph is not shown.

