Reading Stewart §3.9, 4.1, 4.2.

1. Compute the following antiderivatives (later, these will also be called "indefinite integrals.").
(a) $\int u^{3}-5 u^{2}+\pi d u$
(b) $\int 5+4 \sec \theta \tan \theta d \theta$
(c) $\int \sqrt[4]{x^{5}}+\sqrt[5]{x^{4}} d x$
(d) $\int \frac{3}{x^{3}}+\frac{5}{x^{4}}-\frac{2}{x^{5}} d x$
2. Solve the following initial value problem. Your answer should be a function $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =24 x^{2}+6 x-4 \\
f(1) & =11
\end{aligned}
$$

3. Find the function $f(x)$ such that

$$
f^{\prime \prime}(x)=x^{2}-2 x+3,
$$

with $f^{\prime}(1)=2$ and $f(1)=-3$.
Hint You can think of this as two initial value problems in a row.
4. Let $f(x)=\frac{6}{x}$.
(a) Estimate the area under the graph of $y=f(x)$ from $x=1$ to $x=3$ using four equalwidth subintervals, and rectangles of height determined by the right endpoints. (That is, compute the (right-endpoint) Riemann sum R_{4}.)
(b) Sketch the graph of this region (under $y=f(x)$ from $x=1$ to $x=3$) along with the four rectangles. Based on your sketch, is your estimate in part (a) larger or smaller than the actual area under the graph?
5. Let $f(x)=\sqrt{x+1}$, and consider the interval $[3,8]$.
(a) If we chop $[3,8]$ into n equal subintervals, what is the length Δx of each subinterval, and what is the right-hand endpoint x_{i} of the i-th interval?
(b) Write down the Riemann sum $R_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$ for the function $f(x)=\sqrt{x+1}$ on the interval $[3,8]$, using the values of the expressions you found in part (a). Do not simplify the sum.

