1. Differentiate the following functions by any legal method. Simplify your answers.

 a) \(f(x) = x \sin x + 3 \cot x \)
 b) \(g(\theta) = \sec \theta \tan \theta \)
 c) \(h(t) = \frac{\cos t}{1 - \sin t} \)

2. Find (and simplify) an equation for the tangent line to the curve \(y = (2 + x) \cos x \) at the point \((0, 2)\).

3. Find all values of \(x \) between 0 and \(4\pi \) at which the graph of the function \(g(x) = x + 2 \sin x \) has a horizontal tangent line.

4. Differentiate the following functions by any legal method, and simplify your answers. You may (and should) use the differentiation rules, including the Chain Rule.

 a) \(f(x) = \sqrt{\cos x} \)
 b) \(g(x) = \cos \sqrt{x} \)
 c) \(h(t) = (3t^2 - 7t + 4)^7 \)

5. Differentiate the following functions by any legal method, and simplify your answers.

 a) \(F(x) = \sin(5 + x^3) \)
 b) \(G(x) = 5 + \sin^3 x \)
 c) \(Q(x) = (x^2 + 1)^5 (x^2 + 2)^4 \)

6. Differentiate the following functions by any legal method, and simplify your answers.

 a) \(y = \sin(x^2 \cos x) \)
 b) \(R(u) = \left(\frac{u + 1}{u^3 + 4} \right)^5 \)

 c) \(f(x) = \sqrt{x + \sqrt{x}} \)
 d) \(g(x) = \sqrt{\cos(x^2)} \)

due Friday 10/13 by 10pm, on Gradescope.