Reading Stewart $\S2.6, 2.8$.

- 1. Let $g(x) = \cos^2 x$. Compute the second derivative g''(x).
- 2. Let f and g be differentiable functions such that

$$f(3) = 7$$
, $f'(3) = 4$, $f(-2) = 5$, $f'(-2) = 3$, $g(-2) = 3$, $g'(-2) = 6$.

Let $F = f \circ g$. Compute F'(-2).

3. Let f be a differentiable function such that f(3) = 7 and f'(3) = -2. Let $G(x) = \sqrt{4 + 3f(x)}$. Compute G'(3).

Note You may wish to save the remaining problems until after Monday's class.

4. For each of the following equations, find $\frac{dy}{dx}$ using implicit differentiation.

a)
$$2x^3 + x^2y - xy^3 = 4$$
 b) $xy = 2 + \cos y$

5. Use implicit differentiation to find (and then simplify) an equation of the tangent line to the curve

$$x^{2} + y^{2} = \left(2x^{2} + 2y^{2} - x\right)^{2}$$

at the point $(0, \frac{1}{2})$.

6. A spherical balloon is being inflated. At noon, the radius of the balloon is increasing at a rate of 0.4 mm/sec. Also at noon, the diameter of the balloon is 100 mm. How fast is the volume of the balloon increasing at noon?

Make sure to draw and label a diagram, define your variables clearly, set up an equation, and so forth!

7. A cargo plane flying at an altitude of 2000 m flies in a straight, horizontal path directly over the Seeley Mudd building, heading due north. At 1:00pm, its distance from the front entrance (ground floor) of Seeley Mudd is 2500m, and it is flying at 800 km/hr north, away from the building. How fast is the distance from the plane to front entrance increasing at that moment?

Make sure to draw and label a diagram, define your variables clearly, set up an equation, and so forth!