Reading Stewart §2.6, 2.8.

1. Let $g(x)=\cos ^{2} x$. Compute the second derivative $g^{\prime \prime}(x)$.
2. Let f and g be differentiable functions such that

$$
f(3)=7, \quad f^{\prime}(3)=4, \quad f(-2)=5, \quad f^{\prime}(-2)=3, \quad g(-2)=3, \quad g^{\prime}(-2)=6 .
$$

Let $F=f \circ g$. Compute $F^{\prime}(-2)$.
3. Let f be a differentiable function such that $f(3)=7$ and $f^{\prime}(3)=-2$. Let $G(x)=\sqrt{4+3 f(x)}$. Compute $G^{\prime}(3)$.

Note You may wish to save the remaining problems until after Monday's class.
4. For each of the following equations, find $\frac{d y}{d x}$ using implicit differentiation.
a) $2 x^{3}+x^{2} y-x y^{3}=4$
b) $x y=2+\cos y$
5. Use implicit differentiation to find (and then simplify) an equation of the tangent line to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

at the point $\left(0, \frac{1}{2}\right)$.
6. A spherical balloon is being inflated. At noon, the radius of the balloon is increasing at a rate of $0.4 \mathrm{~mm} / \mathrm{sec}$. Also at noon, the diameter of the balloon is 100 mm . How fast is the volume of the balloon increasing at noon?
Make sure to draw and label a diagram, define your variables clearly, set up an equation, and so forth!
7. A cargo plane flying at an altitude of 2000 m flies in a straight, horizontal path directly over the Seeley Mudd building, heading due north. At 1:00pm, its distance from the front entrance (ground floor) of Seeley Mudd is 2500 m , and it is flying at $800 \mathrm{~km} / \mathrm{hr}$ north, away from the building. How fast is the distance from the plane to front entrance increasing at that moment?
Make sure to draw and label a diagram, define your variables clearly, set up an equation, and so forth!

