Math 121 **Final Exam** December 20, 2015

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- You need not simplify algebraically complicated answers. However, numerical answers such as $\sin\left(\frac{\pi}{6}\right)$, $4^{\frac{3}{2}}$, $e^{\ln 4}$, $\ln(e^7)$, $e^{-\ln 5}$, $e^{3\ln 3}$, $\arctan(\sqrt{3})$, or $\cosh(\ln 3)$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)
- 1. [15 Points] Evaluate each of the following limits. Please justify your answers. Be clear if the limit equals a value, $+\infty$ or $-\infty$, or Does Not Exist.

- (a) $\lim_{x \to \ln 3} \frac{3 e^x}{e^{-2x} \frac{1}{2}}$ (b) $\lim_{x \to 0} \frac{\ln(1 x) + \arctan x}{xe^x \sinh x}$ (c) $\lim_{x \to \infty} \left(1 \arcsin\left(\frac{6}{x}\right)\right)^x$
- **2.** [30 Points] Evaluate each of the following **integrals**.
- (a) $\int \frac{x^5}{\sqrt{4-x^2}} dx$ (using a trigonometric substitution) (b) $\int_1^3 \frac{1}{\sqrt{x}(x+3)} dx$

- (c) $\int_{1}^{e^{\sqrt{5}}} \frac{1}{r(4+(\ln x)^2)^{\frac{3}{2}}} dx$
- (d) $\int x \arcsin x \ dx$
- For each of the following improper integrals, determine whether it converges or diverges. If it converges, find its value.
- $\int_{1}^{2} \frac{4}{x^2 8x + 12} dx$
- (b) $\int_{-\infty}^{\infty} \frac{1}{x^2 8x + 19} dx$
- $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} \ dx = \int_{0}^{1} x^{-\frac{1}{2}} \ln x \ dx$
- **4.** [18 Points] Find the **sum** of each of the following series (which do converge):
- (a) $\sum_{n=0}^{\infty} \frac{(-1)^n 4^{2n+1}}{3^{3n-1}}$ (b) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 2^{n+1} (\ln 6)^n}{n!}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{2^{4n} (2n)!}$
- (d) $-\frac{1}{5} + \frac{1}{2 \cdot 5^2} \frac{1}{3 \cdot 5^3} + \frac{1}{4 \cdot 5^4} \dots$ (e) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \dots$ (f) $\sum_{n=0}^{\infty} \frac{1}{e^n}$ (g) $\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{(36)^n (2n+1)!}$
- **5.** [35 Points] In each case determine whether the given series is absolutely convergent, conditionally convergent, or divergent. Justify your answers.
- (a) $\sum_{n=1}^{\infty} \frac{(-1)^n (n^4 + 7)}{n^7 + 4}$ (b) $\sum_{n=1}^{\infty} \frac{(-1)^n \arctan(7n)}{e^n + 7}$ (c) $\sum_{n=1}^{\infty} n \cdot \arctan\left(\frac{1}{n}\right)$

- (d) $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{n+3}$ (e) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} e^{3n} (3n)!}{n^n 4^{2n} (n!)^2}$

6. [15 Points] Find the Interval and Radius of Convergence for the power series

$$\sum_{n=1}^{\infty} \frac{(-1)^n \; (\ln n) \; (4x-1)^n}{n^2 \cdot 5^n}.$$
 Analyze carefully and with full justification.

- **7.** [8 Points]
- (a) Write the MacLaurin Series for the hyperbolic cosine $f(x) = \cosh x$.
- (b) Write the MacLaurin Series for $f(x) = \cosh(2x^3)$.
- (c) Use this series to determine the **twelfth**, and **thirteenth**, derivatives of $f(x) = \cosh(2x^3)$ evaluated at x = 0. That is, compute $f^{(12)}(0)$ and $f^{13}(0)$. Do **not** simplify your answers here.
- 8. [12 Points] Please analyze with detail and justify carefully. Simplify your answers.
- (a) Use the MacLaurin series representation for $f(x) = x \sin(x^2)$ to Estimate $\int_0^1 x \sin(x^2) dx$ with error less than $\frac{1}{100}$. Justify in words that your error is less than $\frac{1}{100}$.
- (b) Estimate $\cos\left(\frac{1}{2}\right)$ with error less than $\frac{1}{100}$. Justify in words that your error is indeed less than $\frac{1}{100}$.
- 9. [10 Points] Consider the region bounded by $y = \cos x$, y = x + 1, x = 0 and $x = \frac{\pi}{2}$. Rotate the region about the vertical line x = 3. COMPUTE the volume of the resulting solid using the Cylindrical Shells Method. Sketch the solid, along with one of the approximating cylindrical shells.
- **10.** [18 Points]
- (a) Consider the Parametric Curve represented by $x = t + \frac{1}{1+t}$ and $y = 2\ln(1+t)$.

COMPUTE the arclength of this parametric curve for $0 \le t \le 4$.

- (b) Consider a different Parametric Curve represented by $x = t e^{2t}$ and $y = 1 \sqrt{8} e^t$. COMPUTE the surface area obtained by rotating this curve about the y-axis, for $0 \le t \le 3$.
- 11. [15 Points] Compute the area bounded outside the polar curve $r = 1 + \sin \theta$ and inside the polar curve $r = 3 \sin \theta$. Sketch the Polar curves and shade the bounded area.