Answer Key for midterm 2 sample 1

1. [30 Points] Compute the following integral, or else show that it diverges.
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Clearing the denominator yields:
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sothat A+ B=0, C=1and 34=3
Solve for A=1, C =1and B = -1
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2. [10 Points] Determine and state whether the following sequence converges or diverges. If
it converges, compute its limit. Justify your answer. Do not just put down a number.
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Switch to the variable x and the related function f(z) = ( ) in order to apply L’H Rule:
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3. [10 Points]  Find the sum of the following series (which does converge).
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Here we have a geometric series with a = BET and r = % = "33 Note, it does converge since
i 25 25 <1
rNr=|-—\ = —
32 32
125 125
16 16 125 32 250
As a result, the sum is given by SUM:1 i o= - 1_625 = 57176 =~ 7| &7
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4. [10 Points] Use the Integral Test to determine and state whether the series Z —
n

n=1
converges or diverges. Justify all of your work.



1
Consider the related function f(x) = n—f with
x

1. f(z) continuous for all z > 0
2. f(x) positive for z > 1
3. f(x) decreasing because
1
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Check the improper integral
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The improper integral converges, and therefore the original series by the Integral Test
(IT).

u=Inxzx dv = z3dx

IBP:
1 1

du=—dr v=——=
T 272

9. [15 Points] Determine whether each of the following series converges or diverges. Name
any convergence test(s) you use, and justify all of your work.

Diverges by n!* term Divergence Test
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First examine the absolute series Z
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Next bound the terms
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Finally, the absolute series is Convergent by CT, and therefore the orginal series is
by ACT.

Or more simply, A.S. CONV by CT = 0.S. CONV by ACT.

6. [25 Points] In each case determine whether the given series is absolutely convergent,
conditionally convergent, or diverges. Name any convergence test(s) you use, and justify all
of your work.
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which is a convergent p-series with p =6 > 1. Next,
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Therefore, these two series share the same behavior, and the absolute series g = is also
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Convergent, by Limit Comparison Test (LCT). Or more simply, A.S. CONV by LCT Finally, we
have ’Absolute Convergence (A.C.) ‘

(Not needed here but Note: This implies that the Original Series is Convergent by ACT.)
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Try Ratio Test:
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The original series is ’Absolutely Convergent by the Ratio Test |.

00 . 1
) ;(—1) +1\/ﬁ+7

o0

First, we show the absolute series is divergent. Note that Z

which is a divergent
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p-series with p = 3 < 1. Next,
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Check: lim v +17 = lim \/ﬁ = lim ————=— = 1 which is finite and non-zero.
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Therefore, these two series share the same behavior. Since Z f is the divergent p-Series
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is also divergent by Limit Comparison Test.
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Or more simply, A.S. DIV by LCT. As a result, we have no chance for Absolute Convergence.

Secondly, we are left to examine the original alternating series with the Alternating Series Test.
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OR to show terms decreasing, could also show that for f(z) =
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Therefore, the original series converges by the Alternating Series Test. (Or simply O.S. CONV by
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AST) Finally, we can conclude the original series is | Conditionally Convergent (C.C.) ‘




