Amherst College
 DEPARTMENT OF MATHEMATICS
 Math 121
 Midterm Exam \#1
 September 30, 2022

- This is a closed-book examination. No books, notes, calculators, cell phones, communication devices of any sort, or other aids are permitted.
- Numerical answers such as $\sin \left(\frac{\pi}{6}\right), 4^{\frac{3}{2}}, \arctan (\sqrt{3}), e^{\ln 4}, \ln \left(e^{7}\right)$, or $e^{3 \ln 3}$ should be simplified.
- Please show all of your work and justify all of your answers. (You may use the backs of pages for additional work space.)

Problem	Score	Possible Points
1		30
2		14
3		10
4		10
5		12
6		12
7		100
Total		

1. Limits [30 Points total, 10 Points each] Evaluate each of the following. Please justify/simplify.
(a) Show that $\lim _{x \rightarrow 0} \frac{\cos (3 x)^{1}-\arctan (2 x)+2 x^{0}-1}{e^{-4 x}-1+4 x}=-\frac{9}{16} \quad \frac{0}{0}$

$$
\begin{aligned}
& L^{\prime H}=\lim _{x \rightarrow 0} \frac{-\sin (3 x) \cdot 3^{0}-\frac{1}{x^{4}(2 x)^{2} \cdot 2}+2}{-4 e^{-4 x}+4}=\frac{-1 \cdot 2+2}{-4+11}=\frac{0}{0} \\
& =\lim _{x \rightarrow 0} \frac{-\cos (3 x) \cdot 9-\frac{-1}{\left(1+4 x^{2}\right)^{2}} \cdot \frac{(d x}{d x}\left(1+4 x^{2}\right) \cdot 2+0}{16 e^{-4 x}+0}=-\frac{16 x^{2}}{16}=1
\end{aligned}
$$

1. Limits (Continued) Evaluate each of the following. Please justify/simplify.
(b) Show that $\lim _{x \rightarrow 0^{+}} x \ln x=0 \checkmark 0^{+} \cdot \ln \left(0^{+}\right)=0 \cdot(-\infty)$ ind.

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\ln (x)^{-\infty}}{1 / x, \infty} \frac{\infty}{\infty} \\
& \quad=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}} \frac{-1}{x} \cdot \frac{x^{2}}{1}=\lim _{x \rightarrow 0^{+}}(-x) \\
& \quad=0 .
\end{aligned}
$$

(c) Show that $\lim _{x \rightarrow \infty}\left(1-\operatorname{ar} / \sin \left(\frac{2}{x^{6}}\right)\right)^{0}=e^{x^{6}}$.

$$
=e^{\lim _{n \rightarrow \infty} x^{6} \ln \left(1-\arcsin \left(\frac{2}{x_{0}}\right)\right)}
$$

Limit in the exponent:

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} x^{b} \ln \left(1-\arcsin \left(\frac{2}{x^{6}}\right)\right) \quad \cos 0 \\
& =\lim _{x \rightarrow \infty} \frac{\ln \left(1-\arcsin \left(\frac{2}{x^{6}}\right)\right)}{1 / x^{6}} \quad \frac{0}{0} \\
& \stackrel{L^{2}+1}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{1-\arcsin \left(2 / x^{6}\right)} \cdot \frac{d}{d x}\left(1-\arcsin \left(\frac{2}{x^{6}}\right)\right)}{-6 / x^{7}} .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1 \cdot(-1) \cdot 1 \cdot(-12)}{-6}=\frac{12}{-6}=-2
\end{aligned}
$$

orig. limit is therefore e^{-2}.

Integrals [34 Points total] Compute the following Definite Integral. Please justify/simplify.
2. Show that $\int_{-2}^{2} \sqrt{4-x^{2}} d x=2 \pi$

Tnig.sub.

$$
\begin{aligned}
& \frac{2 u b .}{\sqrt{4-x^{2}}} \times\left\{\begin{array}{l}
x=2 \sin \theta \\
d x=2 \cos \theta d \theta \\
\sqrt{4-x^{2}}=2 \cos \theta \\
\theta=\arcsin (x / 2)
\end{array}\right. \\
& =\int_{\arcsin (-1)}^{\arcsin (1)} 2 \cos \theta \cdot 2 \cos \theta d \theta \\
& =\int_{-\pi / 2}^{\pi / 2} 4 \cos ^{2} \theta d \theta
\end{aligned}
$$

$$
=\int_{-\pi / 2}^{\pi / 2} 2(1+\cos 2 \theta) d \theta
$$

$$
=[2 \theta+\sin 2 \theta]_{-\pi / 2}^{\pi / 2}
$$

$=\left(2 \cdot \frac{\pi}{2}+\sin \pi\right)^{9}-\left(2\left(-\frac{\pi}{2}\right)+\sin (-\pi)\right)^{0}$

$$
=\pi+\pi
$$

$$
=2 \pi
$$

Integrals (Continued) Compute each of the following Definite Integrals. Please justify/simplify.
3. Show that $\int_{0}^{\ln \sqrt{3}} \frac{e^{x}}{\sqrt{4-e^{2 x}}\left(e^{x}\right)^{2}} d x=\frac{\pi}{6}$

$$
\left\{\begin{array}{l}
u=e^{x} \\
d u=e^{x} d x
\end{array}\right.
$$

$$
=\int_{e^{0}}^{e^{\ln \sqrt{3}}} \frac{d u}{\sqrt{4-u^{2}}}=\int_{1}^{\sqrt{3}} \frac{1}{\sqrt{4-u^{2}}} \cdot \frac{1 / 2}{1 / 2} d u
$$

$$
=\int_{1}^{\sqrt{3}} \frac{d v}{\left(2 / \sqrt{1-(u / 2)^{2}}\right.} d u\left\{\begin{array}{l}
v=u / 2 \\
d v=d u / 2
\end{array}\right.
$$

$$
=\int_{1 / 2}^{\sqrt{3} / 2} \frac{d v}{\sqrt{1-v^{2}}}=\left.\arcsin v\right|_{1 / 2} ^{\sqrt{3} / 2}
$$

$$
=\arcsin \frac{\sqrt{3}}{2}-\arcsin \frac{1}{2}=\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6} .
$$

4. Show that $\int_{e}^{e^{3}} \frac{1}{\left(x+\left(\frac{\left.1 \ln x)^{2}\right]}{}\right.\right.} d x=\frac{\pi}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\pi \sqrt{3}}{6 \cdot 3}=\frac{\pi \sqrt{3}}{18}$

$$
\begin{aligned}
& \left\{\begin{array}{l}
u=\ln x \\
d u=\frac{1}{x} d x
\end{array}\right. \\
& =\int_{1}^{3} \frac{d u}{3+u^{2}} \cdot \frac{1 / 3}{1 / 3}=\int_{1}^{3} \frac{1 / 3}{1+(u / \sqrt{3})^{2}} d u \\
& \left\{\begin{array}{l}
v=u / \sqrt{3} \\
d v=d u / \sqrt{3}
\end{array} \rightarrow d u=\sqrt{3} \cdot d v\right. \\
& =\int_{1 / \sqrt{3}}^{\sqrt{3}} \frac{1 / 3}{1+v^{2}} \sqrt{3} d v \\
& =\left.\frac{\sqrt{3}}{3} \cdot \arctan v\right|_{1 / \sqrt{3}} ^{\sqrt{3}} \\
& =\frac{\sqrt{3}}{3}\left(\underset{\sqrt{3}}{\arctan \sqrt{3}}-\underset{\sqrt{3}}{\arctan } \frac{1}{\sqrt{3}}\right)=\frac{\sqrt{3}}{3}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{3} \cdot \frac{\pi}{6}=\sqrt{\frac{\pi \sqrt{3}}{18}}
\end{aligned}
$$

More Integrals [36 Points total] Compute the following Indefinite Integral. Please justify/simplify.
5. Compute $\int \underbrace{x}_{A} \underbrace{\arcsin x}_{I} d x \quad \begin{cases}u=\arcsin x & d v=x d x \\ d u=\frac{1}{\sqrt{1-x^{2}}} d x & v=\frac{1}{2} x^{2}\end{cases}$

$$
\begin{aligned}
& =\frac{1}{2} x^{2} \arcsin x-\int \frac{1}{2} \cdot \frac{x^{2}}{\sqrt{1-x^{2}}} d x\left\{\begin{array}{l}
\text { Trig } \operatorname{sun} b . \\
x=\sin \theta \\
d x=\cos \theta \operatorname{dos} \theta \\
\sqrt{1-x^{2}}=\cos \theta \\
\theta=\arcsin x
\end{array}\right.
\end{aligned}
$$

$$
=\frac{1}{2} x^{2} \cos \sin x-\frac{1}{2} \int \frac{\sin ^{2} \theta}{\cos \theta} \cdot \cos \theta d \theta
$$

$$
=\frac{1}{2} x^{2} \arcsin x-\frac{1}{4} \int(1-\cos 2 \theta) d \theta
$$

$$
=\frac{1}{2} x^{2} \arcsin x-\frac{1}{4} \theta+\frac{1}{4} \cdot \frac{1}{2} \frac{\sin 2 \theta}{2 \sin \theta \cos \theta}+C
$$

$$
=\frac{1}{2} x^{2} \arcsin x-\frac{1}{4} \arcsin x+\frac{1}{4} x \sqrt{1-x^{2}}+C .
$$

More Integrals (Continued) Compute the following Indefinite Integral. Please justify/simplify.
6. Compute $\int \frac{1}{\left(\frac{\left(9+x^{2}\right)^{\frac{7}{2}}}{\left(\sqrt{9+x^{2}}\right)^{7}}\right.} d x$ Hint: $3^{6}=729$

Tnigsub.

$$
=\int \frac{1}{(3 \sec \theta)^{7}} \cdot 3 \sec ^{2} v d \theta
$$

$$
=\int \frac{3}{3^{7}} \cdot \frac{\sec ^{2} \theta}{\sec ^{7} \theta} d \theta=\frac{1}{3^{6} \sec ^{5} \theta} \int \cos ^{5} \theta d \theta
$$

$$
=\frac{1}{3^{6}} \int\left(1-\sin ^{2} \theta\right)^{2} \cos \theta d \theta
$$

$$
u=\sin \theta
$$

$$
d u=\cos \theta d \theta
$$

$$
=\frac{1}{3^{6}} \int\left(1-u^{2}\right)^{2} d u=\frac{1}{3^{6}} \int\left(1-2 u^{2}+u^{4}\right) d u
$$

$$
=\frac{1}{3^{6}}\left[u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right]+C
$$

$$
=\frac{1}{3^{6}}\left[\sin \theta-\frac{2}{3} \sin ^{3} \theta+\frac{1}{5} \sin ^{5} \theta\right]+C
$$

$$
\sin \theta=? \text { intanmel } x ?
$$

$$
=\frac{x}{\sqrt{9+x^{2}}}
$$

play this m :

$$
\frac{1}{729}\left(\frac{x}{\sqrt{9+x^{2}}}-\frac{2}{3} \frac{x^{3}}{\left(9+x^{2}\right)^{3 / 2}}+\frac{1}{5} \frac{x^{5}}{\left(9+x^{2}\right)^{5 / 2}}\right)+C
$$

More Integrals (Continued) Compute the following Indefinite Integral. Please justify/simplify.
7. Compute $\int \frac{x^{7}}{\frac{\ln \left(x^{2}\right)}{L}} d x=\int 3 x^{7} \ln x d x$

$$
\begin{aligned}
& \text { IP: } \begin{cases}u=\ln x & d v=3 x^{7} d x \\
d u=\frac{1}{x} d x & v=\frac{3}{8} x^{8}\end{cases} \\
& =\frac{3}{8} x^{8} \ln x-\int \frac{3}{8} x^{8} \cdot \frac{1}{x} d x \\
& =\frac{3}{8} x^{8} \ln x-\frac{3}{8} \cdot \frac{1}{8} x^{8}+C \\
& =\frac{3}{8} x^{8} \ln x-\frac{3}{64} x^{8}+C
\end{aligned}
$$

