Goal connect power series and functions; manipulate power series with differentiation and integration; evaluate some non-geometric sums **Reference:** §11.9

Note There is no assignment due Wednesday of this week; this one is due Friday. But it is longer than usual, so start early! The following problems can be done with material already covered by Friday 4/7, so you may want to start with them: 1, 2, 5, 6, 7, 9, 10, 11, 19.

Problems to hand in

Find the Series Representation for the following functions using *substitution* and determine the Radius of Convergence R. Simplify.

1.
$$\frac{1}{1+x^2}$$
 2. $\frac{x^2}{x^4+16}$ 3. $x^3 \cos(x^2)$ 4. $5x^2 \sin(5x)$

5.
$$\frac{d}{dx}(x^3 \arctan(7x)) = 6 \int x^3 \arctan(7x) \, dx = 7 \cdot \frac{d}{dx}x^2 \ln(1+6x) = 8 \cdot \int x^4 e^{-x^3} \, dx$$

9. Find the Series Representation for $f(x) = \frac{1}{(1+x)^2}$.

Hint $\frac{1}{(1+x)^2} = \frac{d}{dx} \left(-\frac{1}{1+x} \right).$

10. Prove the Power Series Representation formula for $\arctan x$. You may follow the arugment shown in class.

11. Find Series Representation for $\ln(5-x)$. Solve for C and the Radius R.

Hint
$$\ln(5-x) = \int \frac{-1}{5-x} dx.$$

12. Find the MacLaurin Series for $f(x) = e^{-2x}$ using two different methods. **First**, using the *Definition* of the MacLaurin Series. **Second**, use Substitution into a known series. Your answers should be in Sigma notation. 13. You do **not** need to state the Radius. Answers should be in Sigma notation $\sum_{n=0}^{\infty}$ here. You may use the fact that

 $\boxed{\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}} \text{ without extra justification.}$

- (a) Use the Definition to compute the MacLaurin Series for $F(x) = \cos x$.
- (b) Use Differentiation to compute the Series for $F(x) = \cos x$.
- (c) Use Integration to compute the Series for $F(x) = \cos x$.

Note Make sure to include the +C, and solve for it.

Find the Sum of each of the following Series, which do converge.

14.	$\sum_{n=0}^{\infty} \frac{7^n}{n!}$	15. $\sum_{n=0}^{\infty} \frac{(-1)^n 5^n}{n!}$	16. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$
17.	$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$	18. $\sum_{n=0}^{\infty} \frac{3^n}{5^n n!}$	19. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$
20.	$1 - \ln 2 + \frac{(\ln 2)^2}{2!}$	$-\frac{(\ln 2)^3}{3!}+\ldots$	21. $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$