Goal connect power series and functions; manipulate power series with differentiation and integration; evaluate some non-geometric sums
Reference: $\S 11.9$

Note There is no assignment due Wednesday of this week; this one is due Friday. But it is longer than usual, so start early! The following problems can be done with material already covered by Friday $4 / 7$, so you may want to start with them: $1,2,5,6,7,9,10,11,19$.

Problems to hand in

Find the Series Representation for the following functions using substitution and determine the Radius of Convergence R. Simplify.

1. $\frac{1}{1+x^{2}}$
2. $\frac{x^{2}}{x^{4}+16}$
3. $x^{3} \cos \left(x^{2}\right)$
4. $5 x^{2} \sin (5 x)$
5. $\frac{d}{d x}\left(x^{3} \arctan (7 x)\right)$
6. $\int x^{3} \arctan (7 x) d x$
7. $\frac{d}{d x} x^{2} \ln (1+6 x)$
8. $\int x^{4} e^{-x^{3}} d x$
9. Find the Series Representation for $f(x)=\frac{1}{(1+x)^{2}}$.

$$
\text { Hint } \frac{1}{(1+x)^{2}}=\frac{d}{d x}\left(-\frac{1}{1+x}\right) \text {. }
$$

10. Prove the Power Series Representation formula for $\arctan x$. You may follow the arugment shown in class.
11. Find Series Representation for $\ln (5-x)$. Solve for C and the Radius R.

Hint $\ln (5-x)=\int \frac{-1}{5-x} d x$.
12. Find the MacLaurin Series for $f(x)=e^{-2 x}$ using two different methods.

First, using the Definition of the MacLaurin Series.
Second, use Substitution into a known series. Your answers should be in Sigma notation.
13. You do not need to state the Radius. Answers should be in Sigma notation $\sum_{n=0}^{\infty}$ here.

You may use the fact that $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ without extra justification.
(a) Use the Definition to compute the MacLaurin Series for $F(x)=\cos x$.
(b) Use Differentiation to compute the Series for $F(x)=\cos x$.
(c) Use Integration to compute the Series for $F(x)=\cos x$.

Note Make sure to include the $+C$, and solve for it.

Find the Sum of each of the following Series, which do converge.
14. $\sum_{n=0}^{\infty} \frac{7^{n}}{n!}$
15. $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n}}{n!}$
16. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{n!}$
17. $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{6^{2 n}(2 n)!}$
18. $\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n} n!}$
19. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}$
20. $1-\ln 2+\frac{(\ln 2)^{2}}{2!}-\frac{(\ln 2)^{3}}{3!}+\ldots$
21. $3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\ldots$

