Goal estimate functions and definite integrals by Taylor approximations and the ASET. Also review interval and radius of convergence.
Reference: §11.10, 11.11

Note For these problems, you should use a handy theorem that we'll mention in class on Friday. Here it is, in case you are starting early (see also p. 775 of the textbook):
Alternating Series Estimation Theorem (ASET): If $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ is an alternating series that passes the three conditions of the alternating series test (a_{n} positive, a_{n} decreasing, $a_{n} \rightarrow 0$), then the error of partial sum $\sum_{n=1}^{m}(-1)^{n} a_{n}$ is less than a_{n+1}.
The "error of the partial sum" means the difference between it and the sums. Less formally: the error of any partial sum is less than the absolute value of the next term in the series.

1. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{20}$. Justify.
2. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{100}$. Justify. (Can reuse work from 1)
3. Use Series to Estimate $\frac{1}{e}$ with error less than $\frac{1}{500}$. Justify. (Can reuse work from 1)
4. Use Series to Estimate $\sin (1)$ with error less than $\frac{1}{1000}$. Justify.
5. Use Series to Estimate $e^{-\frac{1}{3}}$ with error less than $\frac{1}{100}$. Justify.
6. Use Series to Estimate $\arctan \left(\frac{1}{2}\right)$ with error less than $\frac{1}{100}$. Justify.
7. Use Series to Estimate $\int_{0}^{1} x \ln \left(1+x^{3}\right) d x$ with error less than $\frac{1}{20}$. Justify.
8. Use Series to Estimate $\int_{0}^{1} x \sin \left(x^{2}\right) d x$ with error less than $\frac{1}{1000}$. Justify.

Review: Find the Interval and Radius of Convergence for each of the following.
9. $\sum_{n=1}^{\infty}(n!)^{2}(3 x-7)^{n}$
10. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(5 x-2)^{n}}{n^{3} 8^{n}}$
11. $\sum_{n=1}^{\infty} \frac{(x-7)^{n}}{n!\sqrt{n}}$

