Goal Parametric curves: find tangent lines and arc length. Polar curves: convert between polar and rectangular coordinates; sketch curves, especially circles and cardiods.
Reference: §10.1-10.3

1. Consider the following parametric curve.

$$
\left\{\begin{array}{l}
x=3-4 t \\
y=2-3 t
\end{array}\right.
$$

(a) Sketch the curve by using the parametric equation to plot a few points. Indicate with an arrow the direction the curve is traced as t increases.
(b) Eliminate t to find a Cartesian equation for curve.
2. Consider the following parametric curve.

$$
\left\{\begin{array}{l}
x=t-t^{-1} \\
y=1+t^{2}
\end{array}\right.
$$

Find an equation for the tangent line to this curve at the point corresponding to $t=1$.
3. Consider the following parametric curve.

$$
\left\{\begin{array}{l}
x=e^{t}+e^{-t} \\
y=5-2 t
\end{array}\right.
$$

Find the arc length of the portion of this curve from $t=0$ to $t=3$.
For 4-6, Plot the point with the given Polar coordinates. Label everything. Then find the Cartesian coordinates of the point.
4. $(r, \theta)=\left(2, \frac{3 \pi}{2}\right)$
5. $(r, \theta)=\left(\sqrt{2}, \frac{\pi}{4}\right)$
6. $(r, \theta)=\left(-1,-\frac{\pi}{6}\right)$

For 7-8, Plot the point of the given Cartesian coordinates. Label everything.
First, find Polar coordinates (r, θ) of the point, where $r>0$. Keep $0 \leq \theta<2 \pi$.
Second, find Polar coordinates (r, θ) of the point, where $r<0$. Keep $0 \leq \theta<2 \pi$.
7. $(x, y)=(-4,4)$
8. $(x, y)=(3,3 \sqrt{3})$

For 9-14, Carefully sketch each of the following Polar curves. Show all work. Also show both the Cartesian Plot and the final Polar plot. Label everything.
9. $r=2 \cos \theta$
10. $r=3 \sin \theta$
11. $r=1+\sin \theta$
12. $r=2+2 \cos \theta$
13. $r=3-3 \sin \theta$
14. Flower-petal-leaved rose $\quad r=2 \sin (2 \theta)$

