Goal Gain facility with calculus of $\arcsin x$ and $\arctan x$ (also known as $\sin ^{-1} x$ and $\left.\tan ^{-1} x\right)$.
Reference Stewart $\S 6.6$

Examples to study first

Example Prove that $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$.
Solution Let $y=\arctan x$. We want to solve for $\frac{d y}{d x}$.
First, we can invert to obtain the equation $\tan y=x$.
Differentiate this expression, using the chain rule:

$$
\begin{aligned}
\frac{d}{d x}(\tan y) & =\frac{d}{d x}(x) \\
\Rightarrow \sec ^{2} y \frac{d y}{d x} & =1 .
\end{aligned}
$$

(The symbol \Rightarrow means that the previous equation logically implies this equation; it is often pronounced "implies.")
Now we can solve for $\frac{d y}{d x}$ to obtain $\frac{d y}{d x}=\frac{1}{\sec ^{2} y}$.
Finally, we need to re-express this result in terms of x alone, not y. We can do this using the trig identity

$$
\sec ^{2} y=1+\tan ^{2} y,
$$

which implies that

$$
\frac{d y}{d x}=\frac{1}{\sec ^{2} y}=\frac{1}{1+\tan ^{2} y}=\frac{1}{1+(\tan y)^{2}}=\frac{1}{1+x^{2}}
$$

as desired.

Note Another good way to finish this argument is to write that $\sec ^{2} y=\sec ^{2}(\arctan x)$, and then explain why this is equal to $1+x^{2}$.

Example Prove that $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$.
Solution Let $y=\arcsin x$. We want to solve for $\frac{d y}{d x}$. Inverting this equation gives

$$
\sin y=x
$$

Differentiating this equation and solving gives

$$
\begin{aligned}
\frac{d}{d x} \sin y & =\frac{d}{d x} x \\
\Rightarrow \cos y \frac{d y}{d x} & =1 \\
\Rightarrow \frac{d y}{d x} & =\frac{1}{\cos y .}
\end{aligned}
$$

Finally, use the identity $\sin ^{2} y+\cos ^{2} y=1$ to solve for $\cos y: \cos y=\sqrt{1-\sin ^{2} y}=\sqrt{1-x^{2}}$. Combining with the equation above gives

$$
\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}
$$

Note There is actually small logical gap at the end of this argument, but I have left the gap there because it is a minor point that I will not deduct points for if you omit it. The issue is that the identity $\sin ^{2} y+\cos ^{2} y=1$ only implies that $\cos y= \pm \sqrt{1-\sin ^{2} y}$; the sign is ambiguous. This gap can be filled by recalling that the range of $y=\arcsin x$ is $\left[-\frac{1}{2} \pi, \frac{1}{2} \pi\right]$, and $\cos y \geq 0$ for all such values of y. This is a subtle point, so I will not pick on it while grading.

Problems to hand in

Differentiate the following functions. Simplify.

1. $f(x)=\tan ^{-1}\left(x^{2}\right)$
2. $f(x)=\left(\tan ^{-1}(x)\right)^{2}$
3. $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$
4. $f(x)=\ln \left(1-\arcsin \left(\frac{2}{x^{4}}\right)\right)$
5. Find the value of the expression $\tan \left(\sin ^{-1}\left(\frac{2}{3}\right)\right)$
6. Simplify the expression $\sin \left(\tan ^{-1} x\right)$
7. Compute the Second Derivative for $f(x)=\arctan (2 x)$
8. Compute the Second Derivative for $f(x)=\arcsin (6 x)$
9. Prove that $\frac{d}{d x} \sin ^{-1}(3 x)=\frac{3}{\sqrt{1-9 x^{2}}}$
10. Prove that $\frac{d}{d x} \tan ^{-1}(5 x)=\frac{5}{1+25 x^{2}}$
11. Use Integration to Justify that $\int \frac{1}{3+x^{2}} d x=\frac{1}{\sqrt{3}} \arctan \left(\frac{x}{\sqrt{3}}\right)+C$

Compute each of the following Integrals. Simplify.
12. $\int \frac{x^{2}}{x^{2}+1} d x$
13. $\int \frac{x+1}{x^{2}+1} d x$
14. $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{8}{1+x^{2}} d x$
15. $\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} d x$
16. $\int \frac{1}{\sqrt{1-x^{2}} \cdot \sin ^{-1} x} d x$
17. $\int_{1}^{3} \frac{1}{\sqrt{x}(1+x)} d x$
18. $\int_{0}^{\ln 3} \frac{e^{x}}{1+e^{x}} d x$
19. $\int_{0}^{\frac{1}{2} \ln 3} \frac{e^{x}}{1+e^{2 x}} d x$
20. $\int \frac{e^{2 x}}{\sqrt{1-e^{4 x}}} d x$
21. $\int_{3}^{3 \sqrt{3}} \frac{1}{\sqrt{36-x^{2}}}+\frac{1}{9+x^{2}} d x$

