Goal Gain facility with calculus of $\arcsin x$ and $\arctan x$ (also known as $\sin^{-1} x$ and $\tan^{-1} x$). **Reference** Stewart §6.6

Examples to study first

Example Prove that $\frac{d}{dx} \arctan x = \frac{1}{1+x^2}$.

Solution Let $y = \arctan x$. We want to solve for $\frac{dy}{dx}$. First, we can **invert** to obtain the equation $\tan y = x$. **Differentiate** this expression, using the chain rule:

$$\frac{d}{dx} (\tan y) = \frac{d}{dx} (x)$$
$$\Rightarrow \sec^2 y \frac{dy}{dx} = 1.$$

(The symbol \Rightarrow means that the previous equation logically implies this equation; it is often pronounced "implies.")

Now we can **solve** for $\frac{dy}{dx}$ to obtain $\frac{dy}{dx} = \frac{1}{\sec^2 y}$.

Finally, we need to **re-express** this result in terms of x alone, not y. We can do this using the trig identity

$$\sec^2 y = 1 + \tan^2 y$$

which implies that

$$\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1 + \tan^2 y} = \frac{1}{1 + (\tan y)^2} = \frac{1}{1 + x^2}$$

as desired.

Note Another good way to finish this argument is to write that $\sec^2 y = \sec^2 (\arctan x)$, and then explain why this is equal to $1 + x^2$.

Example Prove that $\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1-x^2}}$. Solution Let $y = \arcsin x$. We want to solve for $\frac{dy}{dx}$. Inverting this equation gives $\sin y = x$. Differentiating this equation and solving gives $\frac{d}{dx} \sin y = \frac{d}{dx}x$ $\Rightarrow \cos y \frac{dy}{dx} = 1$ $\Rightarrow \frac{dy}{dx} = \frac{1}{\cos y}$. Finally, use the identity $\sin^2 y + \cos^2 y = 1$ to solve for $\cos y$: $\cos y = \sqrt{1-\sin^2 y} = \sqrt{1-x^2}$. $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$.

Note There is actually small logical gap at the end of this argument, but I have left the gap there because it is a minor point that I will not deduct points for if you omit it. The issue is that the identity $\sin^2 y + \cos^2 y = 1$ only implies that $\cos y = \pm \sqrt{1 - \sin^2 y}$; the sign is ambiguous. This gap can be filled by recalling that the range of $y = \arcsin x$ is $[-\frac{1}{2}\pi, \frac{1}{2}\pi]$, and $\cos y \ge 0$ for all such values of y. This is a subtle point, so I will not pick on it while grading.

Problems to hand in

Differentiate the following functions. Simplify.

1.
$$f(x) = \tan^{-1} (x^2)$$

2. $f(x) = (\tan^{-1}(x))^2$
3. $y = x \sin^{-1} x + \sqrt{1 - x^2}$
4. $f(x) = \ln \left(1 - \arcsin\left(\frac{2}{x^4}\right)\right)$
5. Find the value of the expression $\tan\left(\sin^{-1}\left(\frac{2}{3}\right)\right)$

- 6. Simplify the expression $\sin(\tan^{-1}x)$
- 7. Compute the Second Derivative for $f(x) = \arctan(2x)$
- 8. Compute the Second Derivative for $f(x) = \arcsin(6x)$

9. **Prove** that
$$\frac{d}{dx}\sin^{-1}(3x) = \frac{3}{\sqrt{1-9x^2}}$$

- 10. **Prove** that $\frac{d}{dx} \tan^{-1}(5x) = \frac{5}{1+25x^2}$
- 11. Use Integration to **Justify** that $\int \frac{1}{3+x^2} dx = \frac{1}{\sqrt{3}} \arctan\left(\frac{x}{\sqrt{3}}\right) + C$

Compute each of the following Integrals. Simplify.

12.
$$\int \frac{x^2}{x^2+1} dx$$
 13. $\int \frac{x+1}{x^2+1} dx$ 14. $\int_{\frac{1}{\sqrt{3}}}^{\sqrt{3}} \frac{8}{1+x^2} dx$

15. $\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^{2}}} dx$ 16. $\int \frac{1}{\sqrt{1-x^{2}} \cdot \sin^{-1} x} dx$ 17. $\int_{1}^{3} \frac{1}{\sqrt{x} (1+x)} dx$ $\int_{1}^{\ln 3} e^{x} dx \int_{1}^{\frac{1}{2} \ln 3} e^{x} dx \int_{1}^{\frac{1}{2} \ln 3} e^{2x} dx$

18.
$$\int_0^{10} \frac{e^x}{1+e^x} dx$$
 19. $\int_0^{2} \frac{e^x}{1+e^{2x}} dx$ 20. $\int \frac{e^{2x}}{\sqrt{1-e^{4x}}} dx$

21.
$$\int_{3}^{3\sqrt{3}} \frac{1}{\sqrt{36 - x^2}} + \frac{1}{9 + x^2} \, dx$$