MATH 158
FINAL EXAM
17 DECEMBER 2015

Name : SO‘U.'H.OH.S

e The time limit is three hours.

e No calculators are permitted.

e You are permitted one page of notes, front and back.

e The textbook’s summary tables for the systems we have studied are provided at the
back.

e For any problem asking you to write a program, you may write in a language of
your choice or in pseudocode, as long as your answer is sufficiently specific to tell the
runtime of the program.

e Point values are as indicated in the table below.

1 /10| 2 } /10
3 /10| 4 " /10
5 /10| 6 /10
7 /10| 8 /10
9 /10|10 /10
11 /15 | 12 /15

5 /130



(1) Consider the elliptic curve Y2 = X® + X — 1 over Z/5.
(a) Determine the number of points on this curve (including the point O).

squanns wodulp 5 C°21, U'sl, 1754, 3724, 4% 1, ie. Ot and 1.

YI3+Y-1:  O0-\ =4 => Lgb wl X=0
values of A1 o1 o 2gh el kel
1’+2-| =y => Qph w/ =2
343l =4 =>2eh wirs
Way-1 =2 = 6¢pb wl¥X=4,

So Y ong 2424242 =8 Dinike poinh plw 6,

o 9 éoiwﬁ, i all.

(b) Determine the order of the point P = (1, 1).

By (a), m&(PHS’, w Y ode v L3 e, I k] dnce P=0.

We need only check whehhr ot not 3P=0.

2P= (‘)\)@(.«")
A= (3140 (20 = 42'= 2medS
¥ = N-\-l =2
Y =—(t'\‘2'(1"0)§‘3-=-2M035
= 29=(2,2)

3p = (22)e (L)

| - - -—

- .
cwmee (AN #© ), 3P =*E(O. (no nced Yo compute i),

So odP#1 ey, i+ Polow that ijP=9 :




(2) Explain briefly why each of the following choices is made in DSA. Be specific about
which mathematical facts would make the algorithm either incorrect or insecure oth-

erwise.

(a) The number q is a prime number. P

q & th ol of 9, & the sig. schewe b imectti
Eve can do dnroute Loganithwn bor ¢ modulo P

P q u compasih. Eve can un Pollig~ Hellmow o nedute
her et 4o iwanices o DLP whew +he ordun of Hhe bax
b a et oP q: +hee would be wmuch ecaen.

q ime emuus this attack o wt .

(b) The numbers p, g satisfy p =1 (mod g).
(Zp) hos an dumod Pordun q P and anlyiP (-,
e. Ps( \Mb&q_
T Pinding g woud be twmposihde & the alysnithm
wouldnt weik otherwane .

(c) The number k is selected at random.
1P Eve learm k, o1 iP Eve Pndr thet a valut of e
O\ O Quem

i over wed twice, she can feam the seornet signing ey
Do a s«qmaﬁ'ww Chowsing a new k c& ravdom  eadh
time elimingten thas ke, making the system mou
SLCune



(3) Alice’s RSA public key has modulus N. Bob cannot remember whether her encrypt-
ing exponent is 16 or 27. In a well-meaning but very foolish blunder, he decides to
encrypt his message m with both possible encrypting exponents, creating ¢; (using
e = 16) and ¢y (using e = 27). Bob uses the correct modulus N in both cases. He
then sends both ¢; and ¢, to Alice, with an explanation of what happened.
Eve intercepts ¢; and ¢, as well as the information of which exponent was used to
create which ciphertext. <5 wmeekill terms of ¢; and ¢y using
arithmetic modulo Ngyame=hemee that Eve & [t plaintext m. Express ™M
Thia shows

C\ = m‘bMD&M
Ce2 = Yﬂqj’ MD&N

= cla’= mlbu*l?v mod N Vuvel .

We can un ext. Euchd 4o expum 1 os lbur23Fy:

27 = 1-27

b = b

W= =1ib+12%

5= %216-127

1= 44 -5 16+317

= Gl ol

S T2
lnvenes wisd N 8 powem mpdN ane betha eMidedt,
b Eve can c,MPLd'L w Hhia way Very eaaxlq,

So



(4) The following function definition is meant to calculate the sum of two points P, @ on
the elliptic curve Y2 = X3 + AX + B over Z/p, but it contains a flaw. Explain the
case in which the code will not work properly, and how to fix it.

Assumptions: each point (P,Q, or the return value) is either a pair (z,y) of two
integers with 0 < z,y < p, or the number 0 (for the point O). You may assume
that both P and ¢ do in fact lie on the curve defined by A and B. Also assume
that inv_mod(a,m) is a correctly implemented function that returns the inverse of a
modulo m whenever ¢ is a unit modulo m, but which results in an error if a is not a
unit modulo m.

def add(P,Q,A,B,p):
if P==0: return Q
if Q==0: return P
if P{0] == Q[0] and P[1] != Q[1]: return o] K
if P[0] !'= Q[O]:
rise = (P[1] - Q[1]) % p
run = (P[0] - Q0]) % p
else:
rise = (3xP[0]*P[0] + A) % p
run = (2+%P[1]) % p
slope = (risexinv_mod(run,p)) % p
y_int = (P[1] - P[0]*slope) % p
x = (slope*slope - P[0]-Q[0]) % p
y = (-(slope*x + y_int)) % p
return (x,y)

The wanled Qine i wgemt 4o dekec the com P=oQ
ond retuwn (9 in thiu case. Howevn, iP
P= (% O> whae X+ Ax+B =0 wiodp
Q = (\‘lm
Fhen ¥ will -Pa‘\\', feter an even
0 & lawve vo Wvow.

A eary div on to neplace thiy Line with:

wil ocen sinee Saun’ will he

P P[o]:&[o-] and (P[l]*a[11§‘7op==0'- nerusn O



(5) Write a function pickg(p,q) with the following behavior: if p,q are both prime
numbers, then the return value must be either a number a between 1 and p — 1
inclusive with order ¢ modulo p, or the number —1 if no such integer a exists. Your
function may be randomized. For full points the (expected value of the) number of
arithmetic operations performed by the function must be O(logp).

Wwport aaw dom

deP pickg (p.q):
i‘P (v_-\)%q = 0 : netww -1

hile True:
" = nondow, nanban%(l,ﬁﬁ

q = ?DW(a, (.v"\)lq” P)
P g L= 1: nekuwwm g



(6) Suppose that Samantha is using ECDSA parameters with ¢ = 7. She has published
two valid signatures: (2,3) for the document d = 4, and (2,6) for the document
d' = 5. Eve learns that she used the same random element e to produce both signa-

tures. Determine Samantha’s secret signing key, s.

Note. I am withholding the information of Samantha’s public key and the system
parameters for this problem, since the numbergare small enough that a brute force
solution would be possible. In reality, of course, Eve would know all of this, but ¢

would also be large enough that brute force would not be feasible.

g, = (d+ 58 e wda
i.e. e-S.-5S, =3\ mMod q
D ang valid signatun,

For than +wo;

e-3- 52 =4 mod?
e b-¢2L =5 modt

Su()'\'raddnq the Bal Pow +he setond +wice

e (6-23) +5(-1+22) = 5-24
{=> 2s=-3z4 wod?

(= &5 2 W\o&y

One exampe o whek +he Bl infoumhinn coud be

cunve: Yis YH2+d  ovn Uls
G=(U) »ap.od odn q=7

seout key 322 veil ey V= (2.4)
e=5 D5 hith synctures,

(=26).



(7) Suppose that Eve has intercepted a ciphertext from Bob to Alice. In addition, she
knows by other means that the plaintext is one of only 1000 possibilities (for example,
it might specify a landmark where Alice and Bob will meet, written in a predictable
format and chosen from a short list of options). As usual, Eve knows Alice’s public
key, but not her private key.

(a) Suppose that the cryptosystem being used is RSA. Explain how Eve can very
quickly identify for certain which of the 1000 candidates is the true plaintext.

For cach candidake o me, -, oo,
Eve juat enoypts it com puting

co= ME wmodN  ((Ne) o Hhepubke
ey ]

Evadly one ¢ will b Yhe intercepred ciphartest.
Envypho & one- 1o -one, 50 Eve kenbws i v
the p\w‘w\\'w{-.

(b) Suppose that the cryptosystem being used is Menezes-Vanstone (table 6.13).
Describe a procedure Eve could use that, with very high probability, will pick out
the correct plaintext from the list. (More formally: your procedure should have
the property that if the 999 false plaintexts were chosen uniformly at random,
then the probability of choosing one of them should be negligible.)

Let the candideter be (W\u, W\n) O =12 1000,
and +he apwtent be (¢, a).
For eadn candidake, compube
Yi= Co Wiy wiodp
Y = Co- M modp.
D (ky) doawt Ue onHhe cun, the candidate
can b Huowm ouk. (if coned, (\u.,»ja)=(\(1-,q1)>

The oddh op o Pedu condidedt  mok heing +hown put
are shim, sine x5 possbl pacw (%) adually lie
on the cunve. So mnk Likely only the e

pladterdt will remadn.




(8) The NTru procedure (table 7.4) stipulates that p and ¢ should be chosen such that
ged(p,q) = 1. Suppose that parameters are chosen that do not obey this rule, and
instead p | ¢. In this case, the system is completely insecure. Write a function that
Eve could use to can break it.

Specifically: write a function extract(e,N,p,q,d,h) that efficiently extracts the
plaintext m from any cipher text e, given only the public key and system parameters.
The arguments e and h will be given as lists of N integers. The coefficients in your
answer should be either centerlifted modulo p or reduced modulo p in the typical
way.

e =phaikl +W wod 4.

Siace  pla, a
cdor ane conguuemt modp ar well os md
. c = pheC+? wod P

o hwcEW wodo

So the Runcion extremely sim()b bo waite.

deb extrad (€N, 9.4, AW :
AgFunn [ei%P Por i in e]



(9) Suppose that P,Q are two points on an elliptic curve over Z/9719 (the number
p = 9719 is prime). The order of the elliptic curve is a prime number ¢, and neither
P nor @ is O. Alice has constructed the following two lists of points.

[O’ P’ 2Pa T 99P]
[Q, @& 100P, Q©200P, ---, Q& 9900P]

Prove that there must exist a common element between these two lists, and describe
how finding this common element can be used to find an integer n such that @) = nP.

Since @ & ML evey viow- 9 polut on the cwe has
odu q. Se 9, 9,10, -, (a-0P am alk datingt
mly (40 = O e a\(i-)),

\ 0=30 would
S o equd o @ mulple of P.

all ph. on Fhe cun

By Homes theowewn,
q & P\ WP
¢ 9HI+L +L TS .
< 9710 +72.J0000 = 9320+ 20
¢ \D.000 .
S {09,020, 99559 ] il the poin G somaidn,

say ok NP (m < 10.000). Let

. 50
L= '\/1670 \0O = 14 100]

y = Lw | o)

B 1 0w between 0 & 99 tndusive. s
0 Lin itk Dt Risk
L QoeilP e v the  second

. thew ou equat .

P = eo)P Pa some i, thew
A= (1,+ \DO'}\P

6 N=i+100] v Yre dusiced value.
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(10) Suppose that the NTru cryposystem (Table 7.4) is modified in the following ways.
e The single integer d in the parameters is replaced with three integers dy,ds, ds
such that d; > dy > ds. The requirement that ¢ > (6d + 1)p is removed.

e When Alice chooses f, she chooses it from 7(d; + 1, dy).

e When Alice chooses g, she chooses it from T (d,, ds).

e When Bob chooses r, he chooses it from T (ds, ds).
Derive an inequality of the form “q > ---” (to replace ¢ > (6d+ 1)p from the original
version) in terms of dj,ds,ds (not all three of which must necessarily be used) and
the other public parameters, such that decryption is guaranteed to succeed as long
as this inequality holds.

As bePoue, we nquaethat PIRC 4+ §A¢wm O ik own
centenSiPt wodulo g i ord For decrypiion o wodk, Thet
», ah e, muat be fem—han in (‘%-_ %_]‘, i+ subfrces b

them 4o be below % v ool velue.

¢ coeM.dd gﬁf_ can he waitken as the sum o &s we%.oP 9
wainuwy &3 LDB‘% op 3 (&'\me C haos &3 +1s
& 603 -l‘s),‘
Al webh o 9 o 21 or 0,50 | gnels €2y,
and \Pc_;_m:\sZpo\s.

o cue%.op S Hm W a sum o A+l wedh o m Wi 4
sum o) 4 oy M tvim d Y S% % C«l'h.\/a[m'

o £ ewl (240
Thur  |pa st rmln $ 20y + @AV = (4dy+ 2400 £
'DGUMF\-NM winl  OA ,Qowq ay iy <.§. Hewee 1

sublices o evaune thet

Lq > (2di+ddg+1)p

(N)JTC | IP A'—‘&FAP&Q\’ wWe AoV +he Miqnﬂd inequamvj),




(11) Samantha and Victor agree to the following digital signature scheme. The public
parameters and key creation are identical to those of ECDSA. The verification pro-
cedure is different: to decide whether (s1,s2) is a valid signature for a document d,
Victor computes

wy, = sy'd (mod q)

= o', (mod g),

Wo
then he check to see whether or not
z(w1G ® weV)%q = s1.

If so, he regards (s1, s7) as a valid signature for d.

Suppw Yhek (a) Describe a signing procedure that Samantha can follow to produce a valid sig-
S amuntha fe\ws O nature on a given document d. The procedure should be randomized in such a
way that it will generate different signatures if executed repeatedly on the same

s,= (&GN ¢ Kocument.
wl ¢ nwndoe, equekion X (W G@&WqV) Toq=s, of tnkequn o
ahin ECOIR; guananteed by +he equakion
w.(G® WV = e-Q
of poivt v the cunwe,
whidh 0 equivalewk 4o the conqruimce
Wik WS = e woldg
= Si'dx Slqs =e wod
= 4+ Sy = e, woda
(=> Sy 3 S-\(e.q\—&) wod q.

So  Samanrhe' Signing vocedwu can be

TrCl'wmca newdom % C€LIq.
. 6 = x(eG) Mg




(b) Describe a forgery procedure that Eve can follow to create a signature (si, s2)
and o' document d such that (s1,82) is a valid signature for d under this scheme.
Note that Eve does not need to be able to choose d in advance. The procedure
should be randomized in such a way that it can generate many different forgeries
(on many different docwments).

(see 0.Set & #11b &n an anal ogoss combruction)
As i the exampn Prom clom, Eve can geb o hoit of Plavibility

[ ~+"
by choosing fwo vumben i, o nandsw and suiHng Pw

= x(ta®iV)%a

(Hair & o iP Samanthe chow € fo he i+{asbuk
Eve caw do i+ without evowing -9

Then she mut oo St and A suth Yhak-

iG®i1N = WG OWYV
(=> t+ia = S SIS a mod &
=> i +sia = hv R0 wmod 4
= (Sii- &) = (So-83) & wodq.

Eve can eliminake the need o lenow & by sething
S1= 514 wod q
& S\" MO&C('

whicth will seed, the duitd  congrence.

lV‘ s“VVIMCuqf

N choose i€ g ek remdov

2) set (v od):
Si=x(i-GajVv)9 ¢
St =Si-] mud g

A= Sv¢ § Wlblktt

.



(12) Suppose that n is an odd integer such that exactly % of all units modulo n are
squares (i.e. are congruent to some integer square modulo 7). Alice wishes to factor
n. Suppose that Alice chooses m distinct elements ay,ag,- - ,an, of {1,2,--- ,9;—1}
at random. r
aj
(a) Suppose that Alice discovers that a? = @((mod n) for some ¢ # j. Write a
function factor(n,ai,aj) which returns a proper factor (i.e. a factor besides 1

or n) of n given the values a; and a; whose squares are congruent. For full credit,
your function should perform no more than O(logn) arithmetic operations.

n
Note thak als af wueam thek 8| (arag)(ai- ay),

Sinte OO+t & -\, n X (airag), Similead,
ndai-apen boai-a#0, 0 ny(ai-ag). So

kow wunt divide
to divide the produch, some Dot
gélc\:\' cove divide ai=oy, bk n divide waithe.

So  gudn, civa) owh adlw oi-a) ane beth
pow Pactens. We can Pind eithu one with
ihe Ewelidean al%mi'\’k\m.

aﬁep Daken(n, at,aﬂ: # Proda ‘M(“"a"*"i).
ah = N, ai+ aj
il W=FO:
wh\\Qal\O e

nefun @



- & Tl

(b) Assuming that all m of these elements are (distinct) units modulo n, prove !D
the probability that af = a} (mod n) for some i # j is at least Mﬁ') You

may assume without proof that e™® ﬂ 1 — z for all real numbers z.

The are @ (W32 Jl\%md- squates to choose Prowm (@MW) unity
of whith 1112 an squam) So Fae pmob. o choosing

Aot valus o al mdn G
s (\_ @ 12 (l_ ?g%ﬁ_‘]) (\-Q(vﬂln) (‘—— lu\lﬂ)

‘—\T‘_‘
(Wh. Gl dal ay#ataayr Ve G #a0,ad,—

ak,’
<y eo g W Tl e saet
= o 320H et 3202 et
-32({‘)&0(»\)

So the proo. Prakthew i sone ellmm iy, % ) 1-€
o dowrd.

(c) Suppose that the assumption in part (b) fails, and in fact one of the a; is not a
unit modulo n. This is a feature, not a bug: describe how Alice can quickly find
a proper factor of n in this case, before she even looks for any collisions.

G:. O o nonunit (3 gd(ai, v =+1
Sinte Gz <M, gedlain) 0 a pow Podon
£ n, we bcan fuat akunn it mow

and stop Dod\eing B mew aj.




(additional space for work)

“Bonus” (to keep me happy during grading, not for real points): fill in cryptography-related
(or totally unrelated) dialog for this comic.

I’ve got to tell
Alcce...

i Bob! Whune are
A SECRET you headed today?

)  Eve! Nowhere!
! was just
ieavinq |

Wait ug Bo‘o‘
Haought you had dews]

No‘ Eve wi\l heos

Modulos

e antthmetic
' (s hardl
~

(C) €005 Pyan North

W, giantz, com



- __T_’uhiic parameter creation
A Lrusted party chouses and publishes a (large) prime p
and an integer g having large prime order in ¥,

Private computations

Alice

Choose a secret integer a. Choose a secret integer b.
Compute 4 = ¢g® (mod p). Compute B = g (mod p).

Bob

| - Samantha |

Key creation
“Choose secret primes p sud ¢, |
Choose verification exponent e
with
ged(e, (p—1)(g - 1)) = 1.
| Publish N = pg and e.

Public exchange of values
Alice sends A to Bob
B 4

sc—t

Bob sends B to Alice

Further private computations
Alice Bob

Compute the number BY (mod p). | Compute the number A¥ (mod p). |
B E_{.‘Jb)a =4 = (y“)b = A% (mod p).

The shared secret value is

Signing

Compute d satisfying
de=1 (mod (p — 1)(g — 1)).
Sign document D by computing
S = D9 (mod N).
- Verification
Compute S® mod N and verify
that it is equal to D,

Table 2.2: Diffie-Hellman key exchange

Public parameter creation
A trusted party chooses and publishes a large prime p
and an clement ¢ modulo p of large (prime} order,

Table 4.1: RSA digital signatures

Public parameter creation
A trusted party chooses and publishes a large prime p
and primitive root g modulo p.

Alice | Bob

B

Samantha [ Victor

e

Key creation

Key creation

Choose private key 1 < a < p — 1.
Compute A = ¢g* (mod p).
Publish the public key A.

Encryption

Choose secret signing key
1<a<p—1.

Compute A = ¢g® (mod p).

Publish the verification key A.

Choose plaintext m.
Choose random element k.
Use Alice’s public key A
to compute ¢y = gk (mod )
and c; = mA* (mod p).
Send ciphertext (cy,c2) to Alice.
Decryption

Compute (c¢)~! + ¢ (mod p).
This quantity is equal to m.

Table 2.3: Elgamal key creation, encryption, and decryption

Bob [
Key creation

Alice

|"Choose secret primes p and ¢.
Choose encryption exponent ¢

with ged(e, (p — 1)(g — 1)) = 1.
Publish N = pg and e.

Encryption
Choose plaintext m.
Use Bob’s public key (N, e)

to compute ¢ = m® (mod N).
Send ciphertext ¢ to Bob.
Decryption o

Compute d satisfying
ed =1 (mod (p — 1){qg —1)).
Sompute m’ = ¢f (mod N).

Then m’ equals the plaintext m.

Table 3.1: RSA key creation, encryption, and decryption

Signing

Choose document 2 mod p.
Choose random element 1 < k£ < p
satisfying ged(k,p — 1) = 1.
Compute signature
S = g* (mod p) and
So = (D ~aS1)k~! (nod p—1).
Verification
Compute A5t sz mod p.
Verify that it is equal to g mod p.

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation
A trusted party chooses snd publishes large primes p and g salisfying
p =1 (mod ¢) and an clement g of order ¢ modulo p,
Victor

Samantha |
Key creation

Choose secret sig"'r'fing key
1<a<gg—-1.

Compute A = g® (mod p).

Publish the verification key A.

Signing

| "Choose document D mod g.
Choose random element 1 < k < q.
Compute signature
51 = (g* mod p) mod q and
Sy = (D + a8kt (mod q).
Verification

Yompute V; = DSy ! (mod ¢) and
Ve = 885 (mod g).

Verify that
(¢¥" AV* mod p) mod ¢ = Sy.

Table 4.3: The digital signature algorithm (DSA)



‘A trusted party chooses and publishes a (lnrge) prime p,
| an alliptic curve E over Iy, and a point. P in I(F,).

Private computations |
Bob

Chooses a secret integer ng.

Computes the point Qp = nglf. |

Alice
Chooses a secret integer ng4.

Public exchange of values

Alice e_‘.en(_is )4 to Bob b Qa

Qp ¢ “Bob sends Qg to Alice B

Further private computations
Alice ) Bob
Computes the point ngQp. Computes the poinl np@a.

The shured secret value is  nyQp = na(npP) = np(raP) = npQ _A._|

Table 6.5; Diffie-Hellman key exchange using elliptic curves

Public parameter creation
A trusted party chooses a finite field I, an elliptic curve E/F,,
and e point G € E(F,) of large prime order q.
Samantha __| Victor - !

| Alice | Bob

- Key Creation
Choose a large integer modulus q.
Choose secret integers f and g with f < \/11/—2,
g/1<g < /a2 and ged(frq9) =1. |
Compute h = f~1g (mod g).
| Publish the public key (g, ). ‘
[ Enc_r__yptiu?
' Choose plaintext m with m < /gq/4.
Use Alice’s public key (g, )
to compute e = rh 4+ m (mod g).
Send cipherfext e to Alice.
Decryption

Compute b= f~'a (mod g) with 0 < b < g.
I _T_hen b is the plaintext m.

Table 7.1: A congruential public key cryptosystem

Public parameter creation

A trusted party chooses public parameters (N, p, g,d) with NV and p

f(ey creation

Choose secret signing key o a
l<s<g—-1.

Compute V = sG € E(Fp).

Publish the verification key V.

Signing

Choose document d mod g.
Choose random element e mod q.
Compute e@ € F(F,) and then,

91 = z{eG) mod ¢ and

52 = (d4- 881)e” ! (mod g).
Publish the signature (s1, 92).
i Verification

Compute v; = ds; ! (mod ¢) and

vg = 8155 " (mod g).
Compute v, G+v.V € E(F,) and ver-
ify that

z(v1G +v2V) mod g = $1.

Table 6.7: The elliptic curve digital signature algorithm (ECDSA)
T — Public Parameter Creation -
A trusted party chooses and publishes a (large) prime p,
an elliptic curve E over Fp,, and a point P in E(F,).

Alice | Bob
N - ~ Key Creation N
Chooses a secret multiplier n4.
Computes Q4 = naP.
Publishes the public key Q4.
| __Eucr_;l_pti_or_l
Chooses plaintext values mm; and mey
modulo p.

Chooses a random number k.
Computes R = kP.
Computes 8§ = kQ 4 and writes it
as S = (zs,¥s)-
Sets ¢; = zgm, (mod p)
¢g = ygmy (mod p).
Sends ciphertext (R, ¢, ¢2) to Alice.
B Decryption -
' C'('.x_nﬁaut(% T = nf{ﬁEﬁH writes
itas T = (J:T,yT).
m} =23'c; (mod p) and
m} = yr'ez (mod p).
Then my = m; and mh = my.

and

Sets

Table 6.13; Menezes—Vanstone variant of Elgamal (Exercises 6.17, 6.18)

prime, ged(p, i) = ged(N,g) =1, and g > (Gd + 1)p.
) Alice 1

Bob

Key creation

| Choose private £ € 7(d + 1,4)
that is invertible in Rq and R,

Choose private g € T(d, d).

Compute Fg, the inverse of f in

R,.

Compute Fp, the inverse of f in

R,.
Publish the public key h = Fy *g.

Encryption -
| Choose plaintext m € Rp.
Choose a random r € T(d,d).
Use Alice's public key h to
compute e = prxh+m (mod g).
Send ciphertext e to Alice.

" Decryption

i Compute
Ffre=pg*r+ frm (mod g).
Center-lift to @ € R and compute
m = Fp % a (mod p).

Table 7.4: NTRUEncryt: the NTRU public key cryptosystem



