MATH 158 MIDTERM 1 7 OCTOBER 2015

Nome	Solutions		
Name	JOING! JOHS		

- The time limit is 50 minutes.
- No calculators or notes are permitted.
- For any problem asking you to write a program, you may write in a language of your choice or in pseudocode, as long as your answer is sufficiently specific to tell the runtime of the program.
- Each problem is worth 10 points.

1	/10	2	/10
3	/10	4	/10
5	/10	6	/10
		\sum	/60

(1) (a) Find integers u, v such that 91u + 74v = 1.

91u+	74v u	V
591	1	0
74	1 0	1
91-74 = 17	. 1	-1
74-4-17 = 6	-4	5
17-2.6 = 5	9	-11
6-5 = 1	-13	16

$$1 = -13.91 + 16.74$$
, so

$$u=-13$$
 is one solution.

All other solutions have the form (-13+74k, 16-91k), eg. (61, -75).

(b) Find an integer x such that $74x \equiv 5 \pmod{91}$.

Hence

$$(=) \times = 16.5 \mod 91$$

(on x = -11 mod 91, equivalently)

(2) Alice and Bob are performing Diffie-Hellman key exchange using the following parameters.

$$p = 19$$
$$g = 2$$

(a) Alice chooses the secret number a = 3. What number does she send to Bob?

$$A = g^{\alpha} \mod p$$

$$= 2^{3} \mod 19$$

$$A = 8$$

(b) Bob sends Alice the number B=4. What is Alice and Bob's shared secret?

$$S = A^{b} = B^{a} \mod p$$

 $S = 4^{3} \mod 19$
 $= 4 \cdot 16 \mod 19$
 $= 4 \cdot (-3) = -12 = 7 \mod 19$
 $S = 7$

(3) Alice and Bob are using the ElGamal cryptosystem, with the following parameters.

$$p = 13$$
$$g = 7$$

(a) Alice chooses the private key a = 2. What is her public key, A?

$$A = 9^{a} \mod p$$

$$= 7^{2} \mod 13$$

$$= 49 = 10 \mod 13$$

$$A = 10$$

(b) Suppose that Alice receives the ciphertext $(c_1, c_2) = (2, 6)$ from Bob. What is the corresponding plaintext?

$$C_2 \equiv C_1^a \cdot m \mod p$$

=> $6 \equiv 2^2 m \mod 13$

=> $4m \equiv 6 \mod 3$

now, $4 \cdot 10 = 40 \equiv 1 \mod 3$, so $4^{-1} \equiv 10 \mod 3$, and $m \equiv 4^{-1} \cdot 6 \mod 3$
 $\equiv 10 \cdot 6 \equiv 60 \equiv 8 \mod 3$

(4) Suppose that p is a prime number at most n bits in length, and a is an element of $(\mathbf{Z}/p)^{\times}$. Write a function inverse(a,p) which takes the integers a,p as arguments and returns the inverse of a modulo p. For full points, your function should perform at most $\mathcal{O}(n)$ arithmetic operations, and the return value should be an integer between 1 and p-1 inclusive.

Solution using the extended Euclidean algorithm: (works whether p is prime or not)

```
def inverse(a,p):

50, u0 = p, 0 # each s,u is part of an equation s = au + pv

51, u1 = a, 1 #we will shrink s to one instages.

while s1 \neq 0:

k = s0/s1

s2, u2 = s0 - k + s1, u0 - k + u1 # perform a now operation s0, u0 = s1, u1

s1, u1 = s2, u2 #neplace the older s, u with the newest return u0.96p
```

Alternative solution: compute $a^{p-2} \mod p$. By Fermati little theorem, this will be a modp.

This is O(n) as long as a fast powering algorithm is used.

(5) (a) Let p be a prime, and $a \in (\mathbf{Z}/p)^{\times}$. Define the order of a modulo p_*

ordp(a) = the minimum positive integer e such that $a^e \equiv 1 \mod p$.

(b) Let $p = 2^{16} + 1$ (this number is known to be prime). Prove that for any $a \in (\mathbf{Z}/p)^{\times}$ except 1, $\operatorname{ord}_p(a)$ is even. You may use any facts proved in the class or on the homework.

We moved on the homeword that ordp(a) (p-1),

hence ordp(a) 1216, so ordp(a) is a power of 2. Unless it is 1, it must be even; the only order-1 element is 1 modp.

Hence if a \pm Lmodp, then ordpla) is even.

(c) Suppose that $p = 2^{16} + 1$, as in the previous part. What is $\operatorname{ord}_{p}(2)$?

ordp(2)
$$|2^{16}$$
, so it must be one of 1,2,4,...,2¹⁵,2¹⁶.
Note that $2^{16} \equiv -1 \mod p$, (so ordp(2) $\neq 16$)
but $2^{32} \equiv (2^{16})^2 \equiv (-1)^2 \equiv 1 \mod p$, so ordp(2) $|232$.
The only possibility is that $|a - b| = 32$

(d) Suppose that p is a prime with the property that $\operatorname{ord}_p(a)$ is even for every $a \in (\mathbf{Z}/p)^{\times}$ except 1. Prove that $p = 2^n + 1$ for some integer n. You may use any facts proved in the class or on the homework.

Let q be any prime factor of p-1. Then if q is a primitive root. $q^{\frac{1}{2}}$ has order q modulo p. Since all order (hesides 1) must be even, q must be even, q must be even, q so q=2.

Therefore 2 is the only prime factor of p-1. It follows that, factoring p-1 into mimes,

$$p-1=2^n$$
 for some n.

This gives the desired result.

(6) Alice and Bob have chosen parameters p, g (p is a prime, $g \in (\mathbf{Z}/p)^{\times}$) for Diffie-Hellman key exchange.

On Monday, Alice sends Bob the number A, Bob sends Alice the number B, and they establish a shared secret S.

On Tuesday, Alice sends Bob the number A', Bob sends Alice the number B', and they establish a shared secret S'.

Eve intercepts A, B, A', and B' (as usual), and she also manages to steal the first shared secret S from a post-it note in Bob's trash Monday night. Suppose that she also discovers the following two facts (possibly resulting from lazy random number generation by Alice and Bob).

$$A' \equiv g^2 A \pmod{p}$$

$$B' \equiv B^2 \pmod{p}$$

How can Eve can use this information to efficiently compute the second shared secret S'?

Observe that if a,b, a', b' are the corresponding secret keys.

$$A' = g^{a'} \equiv g^{a+2}$$

& $B' \equiv g^{b'} \equiv g^{2b}$.

There love

$$S \equiv g^{a'b'} \equiv (g^{a'})^{b'} \equiv (g^{a+2})^{b'} \mod p$$

 $\equiv (g^{b'})^{a+2} \equiv (g^{2b})^{a+2} \mod p$
 $\equiv g^{2ab+4b} \mod p$
 $\equiv (g^{ab})^2 (g^{b})^4 \mod p$
 $\equiv S^2 \cdot B^4 \mod p$.

So Eve can find the second secret S' by computing S? B4 and reducing modulo p.

(additional space for work)