
Problem Set 1 Solutions Math 158, Fall 2015

Written problems

1. The following passage has been encrypted using Caesar encryption. That is, there is a secret
key k, and each letter of the plaintext has been advanced k places in the alphabet (where the
letter Z advanced to the letter A). All punctuation and spaces have been left unchanged.

Nzky kyv yvcg fw kyv arezkfi yv jtivnvu fekf kyv

jzuv fw kyv uvjb r gvetzc jyrigvevi -- kyrk yzxycp

jrkzjwpzex, yzxycp gyzcfjfgyztrc zdgcvdvek kyrk xfvj

kztfeuvifxr-kztfeuvifxr, wvvuzex fe kyv pvccfn wzezjy reu

jnvvk nffu, reu veuj lg ze r bzeu fw jfleucvjjcp jgzeezex

vkyvivrc mfzu rj nv rcc dljk.

Determine the secret key k. (You can solve this by hand, but I suggest trying to write some
code to make your job easier. If you can fully automate the process, you may submit your
work for extra credit; see the last problem on this problem set.)

Solution.

The following bit of code implements the Caesar cipher.

Rotate a character ch n places, preserving the case.

If ch isn’t a letter, then this function returns it unchanged.

def rotate_char(ch,n):

if not(ch.isalpha()): return ch #If ch isn’t a letter, don’t change it.

#Calculate the position in the alphabet (A is 0, B is 1, etc.)

loc = ord(ch.upper()) - ord(’A’)

#Advance loc by n places, wrapping if necessary

loc = (loc + n) % 26

#Return the new letter, in the appropriate case

if ch.isupper(): return chr(ord(’A’) + loc)

else: return chr(ord(’a’) + loc)

Rotate an entire string by applying rotate_char to each letter

def rotate(line,n):

res = ""

for c in line:

res += rotate_char(c,n)

return res

NOTE: the more "pythonic" one-liner for this function is:

return ’’.join(rotate_char(ch,n) for ch in line)

Now, to quickly print all possible deciperings of this passage, you can first write the original
passage to a string s and write a loop as follows (output shown, truncated after 20 characters

due Friday 18 September. page 1 of 11

Problem Set 1 Solutions Math 158, Fall 2015

to save space). Note that I rotate s −k places since I am deciphering, rather than enciphering,
it.

>>> for k in range(26):

... print n, rotate(s,-k)[:60], "..."

...

0 Nzky kyv yvcg fw kyv arezkfi yv jtivnvu fekf kyv jzuv fw kyv ...

1 Myjx jxu xubf ev jxu zqdyjeh xu ishumut edje jxu iytu ev jxu ...

2 Lxiw iwt wtae du iwt ypcxidg wt hrgtlts dcid iwt hxst du iwt ...

3 Kwhv hvs vszd ct hvs xobwhcf vs gqfsksr cbhc hvs gwrs ct hvs ...

4 Jvgu gur uryc bs gur wnavgbe ur fperjrq bagb gur fvqr bs gur ...

5 Iuft ftq tqxb ar ftq vmzufad tq eodqiqp azfa ftq eupq ar ftq ...

6 Htes esp spwa zq esp ulytezc sp dncphpo zyez esp dtop zq esp ...

7 Gsdr dro rovz yp dro tkxsdyb ro cmbogon yxdy dro csno yp dro ...

8 Frcq cqn qnuy xo cqn sjwrcxa qn blanfnm xwcx cqn brmn xo cqn ...

9 Eqbp bpm pmtx wn bpm rivqbwz pm akzmeml wvbw bpm aqlm wn bpm ...

10 Dpao aol olsw vm aol qhupavy ol zjyldlk vuav aol zpkl vm aol ...

11 Cozn znk nkrv ul znk pgtozux nk yixkckj utzu znk yojk ul znk ...

12 Bnym ymj mjqu tk ymj ofsnytw mj xhwjbji tsyt ymj xnij tk ymj ...

13 Amxl xli lipt sj xli nermxsv li wgviaih srxs xli wmhi sj xli ...

14 Zlwk wkh khos ri wkh mdqlwru kh vfuhzhg rqwr wkh vlgh ri wkh ...

15 Ykvj vjg jgnr qh vjg lcpkvqt jg uetgygf qpvq vjg ukfg qh vjg ...

16 Xjui uif ifmq pg uif kbojups if tdsfxfe poup uif tjef pg uif ...

17 With the help of the janitor he screwed onto the side of the ...

18 Vhsg sgd gdko ne sgd izmhsnq gd rbqdvdc nmsn sgd rhcd ne sgd ...

19 Ugrf rfc fcjn md rfc hylgrmp fc qapcucb mlrm rfc qgbc md rfc ...

20 Tfqe qeb ebim lc qeb gxkfqlo eb pzobtba lkql qeb pfab lc qeb ...

21 Sepd pda dahl kb pda fwjepkn da oynasaz kjpk pda oeza kb pda ...

22 Rdoc ocz czgk ja ocz evidojm cz nxmzrzy jioj ocz ndyz ja ocz ...

23 Qcnb nby byfj iz nby duhcnil by mwlyqyx ihni nby mcxy iz nby ...

24 Pbma max axei hy max ctgbmhk ax lvkxpxw hgmh max lbwx hy max ...

25 Oalz lzw zwdh gx lzw bsfalgj zw kujwowv gflg lzw kavw gx lzw ...

From this list, it is easy to pick out the one in English. The secret key used was k=17 , and
the plaintext is the following passage from the novel Pnin.

With the help of the janitor he screwed onto the side of the desk a pencil sharpener – that
highly satisfying, highly philosophical implement that goes ticonderoga-ticonderoga, feeding on
the yellow finish and sweet wood, and ends up in a kind of soundlessly spinning ethereal void
as we all must.

In problem 8 I will show how to add another function to the code above that can pick out
this plaintext automatically.

2. Throughout this course, we will say that an integer a is an “n-bit (nonnegative) integer”
if 0 ≤ a < 2n. This means that it can be written in binary with at most n symbols; it is
a convenient shorthand to specify the size of a number, such as a cryptographic key. The
number of bits in a key is a rough guide to its strength.

due Friday 18 September. page 2 of 11

Problem Set 1 Solutions Math 158, Fall 2015

(a) The secret key of a Caesar cipher is a number k from 1 to 25 inclusive. How many bits
are needed to specify this secret key?

Solution Since 25 = 32, 5 bits are enough to represent a number from 0 to 31, and
hence sufficient for a Caesar cipher key.

(b) The Data Encryption Standard (DES) is a private-key encryption algorithm that was a
government standard from 1977 to 2002. DES uses 56-bit secret keys. Suppose that Eve
attempts a brute-force attack on DES by trying to decrypt an intercepted cipher text
with every possible 56-bit key until she finds something that looks like English text. If
Eve’s system can try 1 billion keys per second, how long would it take her to try all of
the keys (and thus be sure to break the encryption)?

(By 1999, a distributed system was able to break DES encryption in less than 24 hours.
DES was replaced in 2002 by a new standard, called AES, which uses keys of at least
128 bits. For “top secret” communication, the government uses AES with 256 bit keys.)

Solution. Eve requires 256/109 seconds to try all possible keys. This comes out to

256
1

109
sec · hour

3600sec
· day

24hour
· year

365.25day
≈ 2.28 years

This is a while, but short enough that you can see why it was necessary to move to
standard with longer keys.

(c) A stronger (but still weak) version of the Caesar cipher is a substitution cipher, as
described in §1.1. A secret key for a substitution cipher consists of a permutation of the
letters from A to Z (see the book for some examples). How many such secret keys are
there? How many bits would be required to specify such a key?

(Although substitution ciphers have fairly long keys, they are still completely insecure;
the textbook describes how they can be broken using methods much more efficient than
brute force search.)

Solution. The number of possible keys is equal to 26! (26 factorial), i.e. 26·25·24 · · · 2·1.
This is because there are 26 choices for where A is sent, then 25 choices (all but the letter
taken for A) for where B is sent, and so on.

The number 26! is approximately 4.03 · 1026. Its logarithm base 2 is log2(26!) ≈ 88.4.

Therefore at least 89 bits are needed in order to represent the secret key of a substitu-
tion cipher (in practice, it might take more than this, since it is not obvious to associate
these permutations with the numbers from 1 to 26!).

3. Textbook exercise 1.9. (same in first edition). If you wish, you may complete problem 7 first
and run your code to answer this question.

Solution. The following lists of steps were generated automatically using the Euclidean
algorithm (some of them run off the end of the page, but you can see the coefficients used).

due Friday 18 September. page 3 of 11

Problem Set 1 Solutions Math 158, Fall 2015

(a)

gcd(291, 252) = gcd(252, 39) (since 291− (1) · 252 = 39)

= gcd(39, 18) (since 252− (6) · 39 = 18)

= gcd(18, 3) (since 39− (2) · 18 = 3)

= gcd(3, 0) (since 18− (6) · 3 = 0)

= 3

(b)

gcd(16261, 85652) = gcd(85652, 16261) (since 16261− (0) · 85652 = 16261)

= gcd(16261, 4347) (since 85652− (5) · 16261 = 4347)

= gcd(4347, 3220) (since 16261− (3) · 4347 = 3220)

= gcd(3220, 1127) (since 4347− (1) · 3220 = 1127)

= gcd(1127, 966) (since 3220− (2) · 1127 = 966)

= gcd(966, 161) (since 1127− (1) · 966 = 161)

= gcd(161, 0) (since 966− (6) · 161 = 0)

= 161

(c)

gcd(139024789, 93278890) = gcd(93278890, 45745899)

(since 139024789− (1) · 93278890 = 45745899)

= gcd(45745899, 1787092) (since 93278890− (2) · 45745899 = 1787092)

= gcd(1787092, 1068599) (since 45745899− (25) · 1787092 = 1068599)

= gcd(1068599, 718493) (since 1787092− (1) · 1068599 = 718493)

= gcd(718493, 350106) (since 1068599− (1) · 718493 = 350106)

= gcd(350106, 18281) (since 718493− (2) · 350106 = 18281)

= gcd(18281, 2767) (since 350106− (19) · 18281 = 2767)

= gcd(2767, 1679) (since 18281− (6) · 2767 = 1679)

= gcd(1679, 1088) (since 2767− (1) · 1679 = 1088)

= gcd(1088, 591) (since 1679− (1) · 1088 = 591)

= gcd(591, 497) (since 1088− (1) · 591 = 497)

= gcd(497, 94) (since 591− (1) · 497 = 94)

= gcd(94, 27) (since 497− (5) · 94 = 27)

= gcd(27, 13) (since 94− (3) · 27 = 13)

= gcd(13, 1) (since 27− (2) · 13 = 1)

= gcd(1, 0) (since 13− (13) · 1 = 0)

= 1

due Friday 18 September. page 4 of 11

Problem Set 1 Solutions Math 158, Fall 2015

(d)

gcd(16534528044, 8332745927) = gcd(8332745927, 8201782117) (since 16534528044− (1) · 8332745927 = 8201782117)

= gcd(8201782117, 130963810) (since 8332745927− (1) · 8201782117 = 130963810)

= gcd(130963810, 82025897) (since 8201782117− (62) · 130963810 = 82025897)

= gcd(82025897, 48937913) (since 130963810− (1) · 82025897 = 48937913)

= gcd(48937913, 33087984) (since 82025897− (1) · 48937913 = 33087984)

= gcd(33087984, 15849929) (since 48937913− (1) · 33087984 = 15849929)

= gcd(15849929, 1388126) (since 33087984− (2) · 15849929 = 1388126)

= gcd(1388126, 580543) (since 15849929− (11) · 1388126 = 580543)

= gcd(580543, 227040) (since 1388126− (2) · 580543 = 227040)

= gcd(227040, 126463) (since 580543− (2) · 227040 = 126463)

= gcd(126463, 100577) (since 227040− (1) · 126463 = 100577)

= gcd(100577, 25886) (since 126463− (1) · 100577 = 25886)

= gcd(25886, 22919) (since 100577− (3) · 25886 = 22919)

= gcd(22919, 2967) (since 25886− (1) · 22919 = 2967)

= gcd(2967, 2150) (since 22919− (7) · 2967 = 2150)

= gcd(2150, 817) (since 2967− (1) · 2150 = 817)

= gcd(817, 516) (since 2150− (2) · 817 = 516)

= gcd(516, 301) (since 817− (1) · 516 = 301)

= gcd(301, 215) (since 516− (1) · 301 = 215)

= gcd(215, 86) (since 301− (1) · 215 = 86)

= gcd(86, 43) (since 215− (2) · 86 = 43)

= gcd(43, 0) (since 86− (2) · 43 = 0)

= 43

4. Textbook exercise 1.10 (same in first edition).

Solution. Keeping track of the linear combinations giving rise to each intermediate number
from the previous problem, we obtain the following (again, this output has been automatically
generated).

(a)
291 = 1 · 291 + 0 · 252
252 = 0 · 291 + 1 · 252
39 = 1 · 291 − 1 · 252
18 = −6 · 291 + 7 · 252
3 = 13 · 291 − 15 · 252
0 = −84 · 291 + 97 · 252

So one possible answer is (13,-15).

due Friday 18 September. page 5 of 11

Problem Set 1 Solutions Math 158, Fall 2015

(b)
16261 = 1 · 16261 + 0 · 85652
85652 = 0 · 16261 + 1 · 85652
16261 = 1 · 16261 + 0 · 85652
4347 = −5 · 16261 + 1 · 85652
3220 = 16 · 16261 − 3 · 85652
1127 = −21 · 16261 + 4 · 85652
966 = 58 · 16261 − 11 · 85652
161 = −79 · 16261 + 15 · 85652

0 = 532 · 16261 − 101 · 85652

So one possible answer is (-79,15). You may notice an odd artifact at the beginning of

these steps: the third line is identical to the first. This is because the smaller of the two
numbers 16261, 85652 was listed first, so the first thing the algorithm did (in effect) was
swap the two values. You also see this occurring in the previous problem.

(c)
139024789 = 1 · 139024789 + 0 · 93278890
93278890 = 0 · 139024789 + 1 · 93278890
45745899 = 1 · 139024789 − 1 · 93278890
1787092 = −2 · 139024789 + 3 · 93278890
1068599 = 51 · 139024789 − 76 · 93278890
718493 = −53 · 139024789 + 79 · 93278890
350106 = 104 · 139024789 − 155 · 93278890
18281 = −261 · 139024789 + 389 · 93278890
2767 = 5063 · 139024789 − 7546 · 93278890
1679 = −30639 · 139024789 + 45665 · 93278890
1088 = 35702 · 139024789 − 53211 · 93278890
591 = −66341 · 139024789 + 98876 · 93278890
497 = 102043 · 139024789 − 152087 · 93278890
94 = −168384 · 139024789 + 250963 · 93278890
27 = 943963 · 139024789 − 1406902 · 93278890
13 = −3000273 · 139024789 + 4471669 · 93278890
1 = 6944509 · 139024789 − 10350240 · 93278890
0 = −93278890 · 139024789 + 139024789 · 93278890

So one possible answer is (6944509,−10350240).

(d)

due Friday 18 September. page 6 of 11

Problem Set 1 Solutions Math 158, Fall 2015
16534528044 = 1 · 16534528044 + 0 · 8332745927
8332745927 = 0 · 16534528044 + 1 · 8332745927
8201782117 = 1 · 16534528044 − 1 · 8332745927
130963810 = −1 · 16534528044 + 2 · 8332745927
82025897 = 63 · 16534528044 − 125 · 8332745927
48937913 = −64 · 16534528044 + 127 · 8332745927
33087984 = 127 · 16534528044 − 252 · 8332745927
15849929 = −191 · 16534528044 + 379 · 8332745927
1388126 = 509 · 16534528044 − 1010 · 8332745927
580543 = −5790 · 16534528044 + 11489 · 8332745927
227040 = 12089 · 16534528044 − 23988 · 8332745927
126463 = −29968 · 16534528044 + 59465 · 8332745927
100577 = 42057 · 16534528044 − 83453 · 8332745927
25886 = −72025 · 16534528044 + 142918 · 8332745927
22919 = 258132 · 16534528044 − 512207 · 8332745927
2967 = −330157 · 16534528044 + 655125 · 8332745927
2150 = 2569231 · 16534528044 − 5098082 · 8332745927
817 = −2899388 · 16534528044 + 5753207 · 8332745927
516 = 8368007 · 16534528044 − 16604496 · 8332745927
301 = −11267395 · 16534528044 + 22357703 · 8332745927
215 = 19635402 · 16534528044 − 38962199 · 8332745927
86 = −30902797 · 16534528044 + 61319902 · 8332745927
43 = 81440996 · 16534528044 − 161602003 · 8332745927
0 = −193784789 · 16534528044 + 384523908 · 8332745927

So one possible solution is (81440996,−161602003).

5. Textbook exercise 1.11 parts (a) and (b) (same in first edition).

Solution.

(a) Suppose that au+ bv = 1, where a, u, b, v are all integers. Let g be the greatest common
divisor of a and b. Then we can write

1 = g ·
(
a

g
u +

b

g
v

)
.

Since a/g and b/g are both integers, it follows that 1 is equal to g times an integer, i.e.
g|1. The only positive integer than divides 1 is 1 itself, hence g = 1, as desired.

(b) No, it is not necessarily true. For example, if a = 3 and b = 2, then we can take
u = 6, v = −6 and obtain au + bv = 6, even though gcd(3, 2) = 1.

What we can say for sure, following the logic of the previous problem, is that if au+bv =
6, then

6 = g ·
(
a

g
u +

b

g
v

)
,

where g = gcd(a, b) as before. Therefore certainly g|6. In fact, this is the the most that

we can say, as the converse is true: if gcd(a, b) divides 6, then 6 can be written au + bv.

due Friday 18 September. page 7 of 11

Problem Set 1 Solutions Math 158, Fall 2015

To see this, simple observe that we can first write g = au′+ bv′, and multiply both sides
by 6/g (an integer) to obtain 6 as a combination of a and b.

Therefore the possible values of gcd(a, b), given that 6 = au + bv for some u and v, are

1, 2, 3, and 6.

Programming problems

6. Write a program which can factor a 16-bit integer into primes. More precisely, the program
should take an integer n such that 2 ≤ n < 216, and print out the prime factors of n, in
order, printing each prime the same number of times as it occurs in the factorization of n.
For example, if the program reads “12”, it should print “2 2 3.”

(Later in the course, you will write programs that can factor integers much longer than 16
bits.)

Solution. For a 16-bit integer n, we can use a trial and error process: if we simply list every
prime number p from 1 to n, we can attempt to divide n by p, and print p to the screen if
p divides n. To get the multiplicity right, we can repeatedly replace n by n/p until it is no
longer divisible by p (printing p each time).

In fact, a further simplification is possible: we can do the above procedure, but list every
integer p from 1 to n, without sifting out the primes. The reason that this will still work
is that any time we find a divisor p of n during this process, we can be sure that if p had
a proper factor d, then we must have already tried d, and divided n by it as many times as
possible, so by this time d - n. But since d|p and p|n, this is impossible. This contradiction
leads to the conclusion that, in the process described, any time we find a p dividing n, then
p is necessarily prime.

This strategy can be implemented in a few lines as follows.

def factor(n):

p = 2

while n>1:

while (n%p == 0):

print p,

n /= p

p += 1

n = int(raw_input())

factor(n)

7. Write a program which takes a list of 1024-bit positive integers (i.e. each integer a in the list
satisfies 1 ≤ a < 21024) and prints their greatest common divisor.

Suggestion. First write a function to compute the greatest common divisor of two positive
integers (we will discuss a classic, very efficient, algorithm for this in class), then figure out
how to use this function to find the GCD of a longer list.

due Friday 18 September. page 8 of 11

Problem Set 1 Solutions Math 158, Fall 2015

Solution. First implement the gcd function using the Euclidean algorithm. Then, we can
begin the first element in the list and successively “shrink” it by replacing it with its greatest
common divisor with each subsequence entry. Here’s one implementation.

def gcd(a,b):

while a!=0: a,b = b%a,a

return b

def gcd_list(ls):

res = ls[0]

for n in ls:

res = gcd(res,n)

return res

ls = map(int,raw_input().split())

print gcd_list(ls)

Note that there is also a very “pythonic” one-liner that can also be used to implement
gcd list, as follows. It uses the fact that gcd(n, 0) = n for all n 6= 0.

def gcd_list(ls):

return reduce(gcd,ls,0)

8. (Extra credit). Write a program which can solve problem 1 of this assignment automatically
(i.e. decrypt a passage of English text encrypted with a Caesar cipher). (I am happy to
provide hints for how to proceed).

Solution. There are a number of ways to approach this problem. Using the code from
problem 1, it is easy to generate the 26 “candidates” for the plaintext; the hard part is
determining which one is in English.

Students in the class found several different approaches to this; you should browse the sub-
missions to see what sort of things were done. I’ll describe one method here.

One easy-to-code approach is to use frequency analysis. The basic idea is that the 26 letters
do not occur equally often in English: some are seen more often than others. On page 6 of
the textbook you can find the frequency of each of the 26 letters. You can similarly form the
list of frequencies of all 26 letters in a candidate text, and attempt to measure how closely
these frequencies mirror those of English. A simple way to quantify them is to regard both
frequency lists as vectors with 26 coordinates and taking their dot product (if you then divide
by the magnitude of the two vectors, you will obtain the cosine of the angle between them,
i.e. the correlation coefficient of the two frequency lists; since the magnitudes of the vectors
are the same for all 26 candidates, we can dispense with this last step and just compare the
dot products). If implemented, this approach is good enough to break the Caesar cipher in
all of the test cases online.

A slightly more theoretically-grounded approach (that is more robust for use in other appli-
cations) is to compute a “likelihood score” for each candidate text. This score is computed

due Friday 18 September. page 9 of 11

Problem Set 1 Solutions Math 158, Fall 2015

as follows: if pi denotes the probability that a randomly chosen letter from an English text
is the ith letter of the alphabet (so p0 is the probability of a, p1 is the probability of b, and
so forth), and the letters of a text correspond to indices i0, i1, i2, · · · , il−1, then the likelihood
of this string is defined to be the product

pi0pi1 · · · pil−1
.

This product tells you the probability that you would obtain this particular sequence of letters
if you were to choose the letters randomly from the “English letter distribution.” It should
be higher for English passages than non-English passages. Since this number will grow very
small very quickly, it is better in practice to compute its logarithm, the log-likelihood.

log pi0 + log pi1 + · · ·+ log pil−1

If you compute the log-likelihood of each of the 26 candidate decipherings, you will generally
find that one of these “scores” beats the others by a long shot; this will be the English
plaintext. Here is an implementation (note that this also uses the code written in problem
1, which I will not reproduce here). I use a structure called a dict to record the letter
frequencies for later computation; you could just as easily use an array, and access it by first
computing the index of a letter in English (from 0 to 25).

import math

Omitted: code for the rotate_char and rotate functions (see problem 1)

A dictionary of letter frequencies, copied from p. 6 of the textbook.

freq = {

’A’ : 0.0815, ’B’ : 0.0144, ’C’ : 0.0276, ’D’ : 0.0379,

’E’ : 0.1311, ’F’ : 0.0292, ’G’ : 0.0199, ’H’ : 0.0526,

’I’ : 0.0635, ’J’ : 0.0013, ’K’ : 0.0042, ’L’ : 0.0339,

’M’ : 0.0254, ’N’ : 0.0710, ’O’ : 0.0800, ’P’ : 0.0198,

’Q’ : 0.0012, ’R’ : 0.0683, ’S’ : 0.0610, ’T’ : 0.1047,

’U’ : 0.0246, ’V’ : 0.0092, ’W’ : 0.0154, ’X’ : 0.0017,

’Y’ : 0.0198, ’Z’ : 0.0008

}

def freq_score(line):

res = 0

for char in line:

char = char.upper()

if char in freq:

res += math.log(freq[char])

return res

def decrypt(line):

Initialially, best score is minus infinity

due Friday 18 September. page 10 of 11

Problem Set 1 Solutions Math 158, Fall 2015

(to ensure that any score will appear better).

best_score = float("-inf")

Try each of 26 rotations, and remember the best frequency score.

for n in range(26):

rot_line = rotate(line,n)

score = freq_score(rot_line)

if score > best_score:

best_score = score

best_rot = rot_line

return best_rot

I/O code for online submission

line = raw_input()

print decrypt(line)

due Friday 18 September. page 11 of 11

