
Problem Set 2 Math 158, Fall 2015

Written problems

1. Textbook exercise 1.15 (1.14 in first edition).

Solution.

Since a1 ≡ a2 (mod m), there exists an integer k such that a1 = a2 + km. Similarly, there
exists an integer h such that b1 = b2 + hm.

It follows that

a1 ± b1 = a2 + km± (b2 + hm)

= a2 ± b2 + (k ± h)m

and therefore a1 ± b1 ≡ a2 ± b2 (mod m), since the two sides differ by a multiple of m.

Similarly,

a1b1 = (a2 + km)(b2 + hm)

= a2b2 + a2hm+ b2km+ hkm2

= a2b2 + (a2h+ b2k + hkm)m

which shows that a1b1 and a2b2 differ by a multiple of m, i.e. a1b1 ≡ a2b2 (mod m).

2. Textbook exercise 1.20 (1.19 in first edition).

Let u1, u2 be inverses modulo m of a1, a2. Then:

a1u1 ≡ 1 (mod m)

a2u2 ≡ 1 (mod m)

⇒ (a1u1)(a2u2) ≡ 1 · 1 (mod m)

⇒ (a1a2)(u1u2) ≡ 1 (mod m)

so u1u2 is an inverse of a1a2 modulo m. In particular, a1a2 has an inverse modulo m, so it is
a unit.

3. Textbook exercise 1.22 (1.21 in first edition).

Solution.

(a) Since m is odd, m = 2k − 1 for some integer k. Thus 2k = m + 1, which means that
2k ≡ 1 (mod m), hence this integer k is the inverse of 2 modulo m. Explictly, k equals
m+1
2 , which is therefore the inverse of 2 modulo m.

due Friday 25 September. page 1 of 10



Problem Set 2 Math 158, Fall 2015

(b) Since m ≡ 1 (mod b), m = 1 + kb for some integer k. Explicitly, this integer k is m−1
b .

Then kb = m− 1, so kb ≡ −1 (mod m); multiplying by (−1) gives (−k)b ≡ 1 (mod m).
Therefore −k is an inverse of b modulo m. To obtain a “reduced” inverse, we must
simply reduce −k modulo m. Since 0 < k < m, it follows that 0 < m − k < m, i.e.
1 ≤ m− k ≤ m− 1. So m− k is the value we seek. Expressing this in terms of m and
b, we obtain:

m− k = m− m− 1

b

=
(b− 1)m+ 1

b
.

Notice that when b = 2, this formula specializes to m+1
2 , as found in part (a).

4. Consider the linear congruence ax ≡ b (mod M). Prove that this congruence has a solution
if and only if gcd(a,M) divides b.

Solution.

First, suppose that the congruence has a solution. Then there is an integer k such that
ax = b + kM . Let g = gcd(a,M). Then b = ax − kM = g · (agx − k

M
g ), so b is equal to g

times an integer, i.e. g divides b.

Conversely, suppose that g = gcd(a,M) divides b. From the extended Euclidean algorithm,
there exist integers u, v such that au + Mv = g. Multiplying both sides of this equation
by the integer b

g gives a(u b
g ) + (v b

g )M = b. Since v b
g is an integer, it follows that au b

g ≡ b

(mod M). Therefore x = u b
g is a solution to the congruence ax ≡ b (mod M); in particular,

the congruence has a solution.

5. Textbook exercise 1.34 (1.32 in first edition).

Solution.

(a) The following table shows the sequence of powers of 2 modulo the four primes listed
(shown until it repeats).

p = 7 2, 4, 1, · · · (period 3)

p = 13 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, · · · (period 12)

p = 19 2, 4, 8, 16, 13, 7, 14, 9, 18, 17, 15, 11, 3, 6, 12, 5, 10, 1, · · · (period 18)

p = 23 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1, · · · (period 11)

For p = 7 and p = 23, these lists are incomplete (both include exactly half of all units
modulo p). For p = 13 and p = 19, these lists include all units, so 2 is a primitive root.

(b) The following table shows the sequence of powers of 3 modulo the four primes listed.

p = 5 3, 4, 2, 1, · · · (period 4)

p = 7 3, 2, 6, 4, 5, 1, · · · (period 6)

p = 11 3, 9, 5, 4, 1 · · · (period 5)

p = 17 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1, · · · (period 16)

due Friday 25 September. page 2 of 10



Problem Set 2 Math 158, Fall 2015

Therefore 3 is a primitive root modulo p = 5, 7, and 17, but not 11.

(c) We can check whether any given number is a primitive root by listing its powers (mod p)
and seeing if there are p− 1 of them. Here is a quick function definition that does this.

>>> def is_pr(g,p):

... if g%p == 0: return False

... pows = set()

... for e in range(p-1):

... pows.add( (g**e)%p )

... return len(pows) == p-1

...

Here, g**e is Python’s syntax for ge (if you type g^e, you will end up with the “bitwise
xor” of g and e, which is a very different thing). Of course, we ought to replace this with
a “fast-power” algorithm that takes advantage of the fact that we’re planning to reduce
the result modulo p; for numbers of the size we’re working with, though, performance is
not an issue.

Using this function we can start trying potential values of g until we find a primitive
root.

>>> is_pr(2,23)

False

>>> is_pr(3,23)

False

>>> is_pr(4,23)

False

>>> is_pr(5,23)

True

So 5 is a primitive root modulo 23. Similarly, we can find a primitive root for each of
the other primes mentioned this way.

>>> is_pr(2,29)

True

>>> is_pr(2,41)

False

>>> is_pr(3,41)

False

>>> is_pr(4,41)

False

>>> is_pr(5,41)

False

>>> is_pr(6,41)

True

>>> is_pr(2,43)

False

>>> is_pr(3,43)

True

due Friday 25 September. page 3 of 10



Problem Set 2 Math 158, Fall 2015

so 2 is a primitive root modulo 29, 6 is a primitive root modulo 41, and 3 is a primitive
root modulo 43.

For reference, here are lists of all primate roots for each of these primes.

p = 23 5, 7, 10, 11, 14, 15, 17, 19, 20, 21

p = 29 2, 3, 8, 10, 11, 14, 15, 18, 19, 21, 26, 27

p = 41 6, 7, 11, 12, 13, 15, 17, 19, 22, 24, 26, 28, 29, 30, 34, 35

p = 43 3, 5, 12, 18, 19, 20, 26, 28, 29, 30, 33, 34

(d) Using the is pr function written above, we can quickly produce this list as follows.

>>> for g in range(1,11):

... if is_pr(g,11): print g,

...

2 6 7 8

Indeed, there are 4 of them, and φ(10) = 4 (the numbers relatively prime to 10 are
1, 3, 7, 9).

(e) We can define the following function to return all the primitive roots of a given prime
as a list.

>>> def all_prs(p):

... res = []

... for g in range(1,p):

... if is_pr(g,p): res += [g]

... return res

...

Calling this function on p = 229 gives the full list.

>>> all_prs(229)

[6, 7, 10, 23, 24, 28, 29, 31, 35, 38, 39, 40, 41, 47, 50, 59, 63, 65, 66,

67, 69, 72, 73, 74, 77, 79, 87, 90, 92, 96, 98, 102, 105, 110, 112, 113,

116, 117, 119, 124, 127, 131, 133, 137, 139, 142, 150, 152, 155, 156,

157, 160, 162, 163, 164, 166, 170, 179, 182, 188, 189, 190, 191, 194,

198, 200, 201, 205, 206, 219, 222, 223]

We can quickly determine the length of this list as follows.

>>> len(all_prs(229))

72

So there are 72 primitive roots modulo 229. To check that this is equal to φ(228), we
can quickly put together a naive (but efficient enough for primes of this size) algorithm
to commute φ directly from the definition as follows.

>>> def gcd(a,b):

... while b != 0: a,b = b,a%b

... return a

...

due Friday 25 September. page 4 of 10



Problem Set 2 Math 158, Fall 2015

>>> def phi(m):

... res = 0

... for a in range(m):

... if gcd(a,m) == 1: res += 1

... return res

...

>>> phi(228)

72

So indeed the number of primitive roots modulo 229 is equal to φ(228).

(f) This can be accomplished in a few lines in the Python terminal as follows. Note that it is
easy enough in this case to just type in the primes less than 100, but various algorithms
are available to do this automatically for a bound of your choice.

>>> primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97]

>>> for p in primes:

... if is_pr(2,p): print p,

...

3 5 11 13 19 29 37 53 59 61 67 83

So 2 is a primitive root for 12 of the first 25 primes, or about half of them. Despite
this seemingly strong evidence, it is actually unknown whether 2 is even a primitive root
for infinitely many primes or not (it is believed that it is; this claim is called Artin’s
conjecture).

(g) We can use the same code as before.

>>> for p in primes:

... if is_pr(3,p): print p,

...

2 5 7 17 19 29 31 43 53 79 89

>>> for p in primes:

... if is_pr(4,p): print p,

...

>>>

Note that 4 is not a primitive root for any primes less than 100. In fact, 4 is not a
primitive root for any primes at all. This is because no perfect square can be a primitive
root for any primes (with the exception of p = 2, for which any odd number, hence any
odd square, is a primitive root).

6. (a) Suppose that a and b are two integers such that ga ≡ 1 (mod m) and gb ≡ 1 (mod m).
Prove that ggcd(a,b) ≡ 1 (mod m).

(b) Suppose g ∈ (Z/pZ)×, where p is a prime. Let d be the smallest positive integer such
that gd ≡ 1 (mod p) (called the multiplicative order of g (mod p)). Prove that d divides
p− 1.

Solution.

due Friday 25 September. page 5 of 10



Problem Set 2 Math 158, Fall 2015

(a) Since ga ≡ 1 (mod m), it follows that gau ≡ (ga)u ≡ 1 (mod m) for any nonnegative
integer m. Furthermore, defining g−n (mod m) to be the inverse of gn modulo m, it
also follows that gau ≡ 1 (mod m) for all negative integers u as well, since the inverse
of 1 is 1. Similarly, gvb ≡ 1 (mod m) for all integers v.

From the extended Euclidean algorithm, we know that there exist integers u, v such that
gcd a, b = au+ bv. It follows that

ggcd(a,b) = (ga)u(gb)v ≡ 1u1v ≡ 1 (mod m).

(b) From Fermat’s little theorem, gp−1 ≡ 1 (mod p). Since gd ≡ 1 (mod p), part (a) implies
that ggcd(d,p−1) ≡ 1 (mod p). Since d is the smallest such exponent, and since gcd(d, p−
1)|d, it follows that gcd(d, p−1) must equal d exactly (if it were a proper factor, it would
be smaller than d). So d = gcd(d, p−1), which implies in particular that d divides p−1.

7. Textbook exercise 2.3 (same in first edition).

Solution

(a) If a and b are two solutions to gx ≡ h (mod p), then ga ≡ gb (mod p), hence ga−b ≡ 1
(mod p) (by multiplying by g−1 (mod p) b times on both sides). The powers of g modulo
p form a periodic sequence of period p−1, so in particular the number 1 occurs (modulo
p) as a power of g precisely when the exponent is a multiple of (p− 1). Therefore a− b
is a multiple of p− 1, i.e. a ≡ b (mod p− 1).

This means that the various possible integer values of the discrete logarithm logg(h)
are all congruent modulo p − 1. In particular, there is only one possible element of
Z/(p− 1) that arises by reducing one of these exponents modulo p. Hence, logg gives an
unambiguously defined function from (Z/p)× to Z/(p− 1).

(b)

glogg h1+logg h2 = glogg h1glogg h2

≡ h1h2 (mod p)

Thus the number logg h1 + logg h2 (or rather, the sum of any possible integer values for
each of these two discrete logarithms) satisfies the defining property of logg(h1h2), so it
is a discrete logarithm of h1h2, as desired.

(c)

gn logg h ≡
(
glogg h

)n
(mod p)

≡ hn (mod p)

Thus n logg h satisfies the defining property of logg(hn).

8. Textbook exercise 2.4 (same in first edition).

Solution.

due Friday 25 September. page 6 of 10



Problem Set 2 Math 158, Fall 2015

(a) The powers of 2 modulo 23 are 2, 4, 8, 16, 9, 18,13, 3, 6, 12, 1, · · · (period 11). Therefore
log2 13 = 7 is one solution. More generally, since the order of 2 modulo 23 is 11 (as seen
above), this discrete logarithm can be described by the class 7 (mod 11).

(b) The powers of 10 modulo 47 are 10, 6, 13, 36, 31, 28, 45, 27, 35, 21,22, · · · (this sequence
turns out to have period 46, though I won’t copy it all out), so log10(22) = 11 (or more
generally, 11 (mod 46)).

(c) log627(608) = 18, since table 2.1 shows that 62718 ≡ 608 (mod 941). The text mentions
that 627 is a primitive root modulo 941, so the most complete answer would be 18
(mod 940).

Programming problems

9. You play Bob in this problem. Write a program to perform Diffie-Hellman key exchange.
Specifically, you will receive three integers from Alice: p, g, and A (as described in Table 2.2
of the textbook), where p is a 1024-bit prime. You must generate a number B to send to
Alice, and also compute the shared secret S. You should look up how to generate random
numbers. The autograder will check to make sure that your program is not deterministic.

Solution.

As described in the book, the values B and S are computed by choosing an ephemeral key
b ∈ Z/(p − 1) and then computing B ≡ gb (mod p) and S ≡ Ab (mod p). Once we have a
fast-powering algorithm, this can be done in a few lines as follows.

import random

random.seed()

# Fast powering algorithm

# Returns (a^e)%m

def pow_mod(a,e,m):

res = 1

while e>0:

if e%2: res = (res*a)%m

a = (a*a)%m

e /= 2

return res

# Read the input

[p,g,A] = map(int,raw_input().split())

# Generate the ephemeral key

b = random.randrange(1,p-1)

# Compute the public number B and shared secret S

print pow_mod(g,b,p), pow_mod(A,b,p)

due Friday 25 September. page 7 of 10



Problem Set 2 Math 158, Fall 2015

Note. I’ve implemented a fast modular powers function here, in order to show how it works.
However, this is actually built into Python as simply pow(a,e,m), so you can just use that
rather than implementing it yourself.

10. Write a problem to solve linear congruences of the form ax ≡ b (mod M). If the congruence
has solutions, your program should give a single congruence x ≡ c (mod N) that describes
them all. If the congruence has no solutions, your program must detect this.

Solution

We know from problem 4 that a solution exists if any only if gcd(a,M)|b. So we can compute
this gcd (using an efficient method, like the Euclidean algorithm) and return “None” if it
does not divide b.

In the special case gcd(a,M) = 1 (as in the first ten test cases), a solution is guaranteed to
exist, and it can be found in the same way as in usual algebra: multiplying be an inverse of
a. The congruence ax ≡ b (mod M) is true if and only if x ≡ ba−1 (mod M). The value a−1

(mod M) can be found quickly as the integer u in a solution to au+Mv = 1.

In the general case, where gcd(a,M) 6= 1, we can reduce to this special case by observing
that g divides all three of a, b,M . Therefore

ax ≡ b (mod M)

⇔ ∃k ∈ Z : ax− b = kM

⇔ ∃k ∈ Z :
a

g
x− b

g
= k

M

g

⇔ a

g
x ≡ b

g
(mod M/g).

Since a
gu+ M

g v = 1 (for the same u and v that give au+Mv = g), it is now the case that a
g

is a unit modulo M
g ; its inverse is u. Therefore the original congruence is equivalent to

x ≡ u b
g

(mod M/g).

Hence we need to solve the equation au + bM = g, which can be done at the same time
that g is computed (using the extended Euclidean algorithm); then the desired answer will

be N = M
g , c =

(
u b
g

)
%N . Here is an implementation. Note that the function implementing

the extended Euclidean algorithm is streamlined somewhat, so that is computes g and u but
does not bother to compute v (which is not needed for any later computation).

# A version of the extended Euclidean Algorithm.

# Returns a pair (g,u), where g = gcd(a,m) and au = g mod m.

def ext_euclid(a,m):

pre = (m,0)

cur = (a,1)

while cur[0] > 0:

due Friday 25 September. page 8 of 10



Problem Set 2 Math 158, Fall 2015

k = pre[0]/cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1])

pre = cur

cur = nex

return pre

# Returns None if ax = b mod M has no solutions.

# Otherwise returns a pair (c,N) where the solution is x = c mod N.

def solve(a,b,M):

g,u = ext_euclid(a,M)

if b%g != 0: return None

return ( ((b/g)*u)%(M/g), M/g )

# Read the input

[a,b,M] = map(int,raw_input().split())

# Compute and print the output

soln = solve(a,b,M)

if not(soln): print ’None’

else: print soln[0],soln[1]

11. You play Eve in this problem. You have intercepted six encrypted messages sent from Alice
to Bob. The cryptosystem they are using converts a string (the plaintext) into an integer (the
ciphertext); so the data you have intercepted consists of six integers. You have also obtained
the source code Alice and Bob are using for their encryption; it is reproduced below on the
last page (you can also find it in the Python starter code on hackerrank). Alice and Bob have
a secret key k, which is a 1024-bit integer.

Write a program to break Alice and Bob’s encryption, and print the original six plaintext
messages.

Solution.

The encryption can be broken by extracting the secret key from the ciphertexts. The key
observation is that each cipher text is of the form key · encode(text), hence they all share
a common factor of key. It is possible that they share an even larger common factor: specif-
ically, the gcd of all six ciphertexts will be equal to key times the gcd of the six encoded
plaintexts. However, it turns out that it is extremely unlikely that six reasonably well-
distributed numbers have a common factor (if the integers are large enough, it is a neat
exercise in probability to show that the probability that they are relatively prime very close
to is

∏
p prime(1−

1
p6

), which can be reexpressed with a bit of algebraic effort as
(∑∞

n=1
1
n6

)−1
,

which is about 0.98. You can find an exact value with a bit more work, but it’s not really
needed for our current purpose).

Therefore, with a small chance of error, we will extract the key and hence break the encryption
by simply taking the gcd of the six ciphertexts. You can use your code from a problem on the
previous problem set to do this. Here is an example implementation (you should also include
Alice and Bob’s original source; I have omitted here for clarity).

due Friday 25 September. page 9 of 10



Problem Set 2 Math 158, Fall 2015

def gcd(a,b):

while b != 0:

a,b = b,a%b

return a

# Extract the key and decipher a list of ciphertexts

def analyze(ciph):

key = reduce(gcd,ciph,0) # Concise syntax to take g=0 and repeatedly

# replace g with gcd(g,ciph[i]).

return [decipher(n,key) for n in ciph]

# Read the input

ciph = map(int,raw_input().split())

# Print the output

for plain in analyze(ciph): print plain

Note. If you want a stronger algorithm that could work with fewer than 6 plaintexts, and
have a reduced probability of error in any case, you could use compute the gcd and then
successively try integer multiples of it. This would require some algorithm to tell whether the
resulting deciphered texts “look like” valid plaintext or not, which would depend somewhat
on what sort of data they are (e.g. if they are English text, frequency analysis would likely
be effective).

due Friday 25 September. page 10 of 10


