
Problem Set 4 Solutions Math 158, Fall 2015

Written problems

1. Solve each system of congruences. Your answer should take the form of a single congruence
of the form x ≡ c (mod m) describing all solutions to the system.

(a) x ≡ 1 (mod 3)
x ≡ 2 (mod 5)

(b) x ≡ 6 (mod 11)
x ≡ 2 (mod 10)

(c) x ≡ 2 (mod 3)
x ≡ 1 (mod 10)
x ≡ 3 (mod 7)

(d) x ≡ 6 (mod 8)
x ≡ 3 (mod 9)
x ≡ 17 (mod 17)

Solution.

(a) Since 2 · 3− 5 = 1, the inverse of 3 modulo 5 is 2. We use this below.

x = 1 + 3k for some integer k

⇒ 1 + 3k ≡ 2 (mod 5)

3k ≡ 1 (mod 5)

3−1 · 3k ≡ 3−1 (mod 5)

k ≡ 2 (mod 5)

⇒ k = 2 + 5h for some integer h

x = 1 + 3(2 + 5h)

x = 7 + 15h

⇒ x ≡ 7 (mod 15).

(b) The inverse of 11 modulo 10 is just 1 (since 11 ≡ 1 itself), which makes the computation
a bit simpler.

x = 6 (mod 11)

⇒ x = 6 + 11k for some integer k

6 + 11k ≡ 2 (mod 10)

11k ≡ −4 (mod 10)

k ≡ 6 (mod 10)

⇒ k = 6 + 10h for some integer h

x = 6 + 11(6 + 10h)

x = 72 + 110h

⇒ x ≡ 72 (mod 110)

due Friday 16 October. page 1 of 10

Problem Set 4 Solutions Math 158, Fall 2015

(c) We can proceed in two steps, first merging the first two congruences, then merging the
result with the third. To be more succinct, I will skip some of the more routine steps
shown in the first two parts.

x = 2 + 3k

3k ≡ 1− 2 ≡ 9 (mod 10)

k ≡ 3 (mod 10)

x = 2 + 3(3 + 10h) = 11 + 30h

30h ≡ 3− 11 ≡ 6 (mod 7)

2h ≡ 6 (mod 7)

h ≡ 4 · 6 ≡ 3 (mod 7)

x = 11 + 30(3 + 7j) = 101 + 210j

x ≡ 101 (mod 210)

(d) We proceed similarly to the previous part.

x = 6 + 8k

8k ≡ 3− 6 ≡ 6 (mod 9)

k ≡ −6 ≡ 3 (mod 9)

x = 6 + 8(3 + 9h) = 30 + 72h

72h ≡ 17− 30 ≡ 4 (mod 17)

4h ≡ 4 (mod 17)

h ≡ 1 (mod 17)

x = 30 + 72(1 + 17j) = 102 + 1224j

x ≡ 102 (mod 1224)

2. The element 288 ∈ (Z/919)× has order 17. Use the babystep-giantstep algorithm, making
using of the fact that the order of 288 is known to be 17, to evaluate the discrete logarithm
log288 162 for the prime p = 919. You may use a computer to do the arithmetic, but show
explicitly the two lists from which you find the collision.

Solution.

Since 17 < 52, we can choose B = 5. Then it suffices to compute two lists, containing 288e

(mod 919) and 162(288−5)e (mod 919) for e = 0, 1, 2, 3, 4.

The first five powers of 288 modulo 919 are: 288, 234, 305, 535, 607. The inverse of 607
(mod 919) is 162. Therefore the second row of the table will consist of 162 · 162e%919.
The resulting two lists are as follows.

e 0 1 2 3 4

288e (mod 919) 1 288 234 305 535
162 · 288−5e (mod 919) 162 512 234 229 338

Sure enough there is a collision: 2882 ≡ 234 ≡ 162 · 288−5·2 (mod 919), hence 28812 ≡ 162
(mod 919). So the desired discrete logarithm is 12.

due Friday 16 October. page 2 of 10

Problem Set 4 Solutions Math 158, Fall 2015

3. Evaluate the discrete logarithm log40 33 for the prime p = 73 using the Pohlig-Hellman
algorithm, according to the following steps (see the statement of Theorem 2.31 in the textbook
for details on the notation). You may use, without proof, the fact that 40 is a primitive root
modulo 73.

(a) Let N = ord73(40). Factor N into prime powers as N = qe11 · · · q
et
t .

(b) Determine the numbers gi and hi for each i from 1 to t inclusive. For each i, what is the
order of gi modulo 73?

(c) For each i, evaluate the discrete logarithm yi = loggi hi, using a method of your choice.

(d) Solve the system of congruences x ≡ yi (mod qeii) to obtain the discrete logarithm
x = log40 33.

Solution.

(a) Since 40 is a primitive root, its order modulo 73 is N = 72. Factoring into prime powers,

N = 2332.

(b)

g1 ≡ 40N/8 ≡ 409 (mod 73)

≡ 10 (mod 73)

h1 ≡ 33N/8 ≡ 339 (mod 73)

≡ 63

g2 ≡ 40N/9 ≡ 408 (mod 73)

≡ 55 (mod 73)

h2 ≡ 33N/9 ≡ 338 (mod 73)

≡ 55 (mod 73)

The order of g1 is 8 and the order of g2 is 9, by construction.

(c) To evaluate log10(63), we can use the fact that 10 has order 8 modulo 73. This is small
enough that it’s reasonable to just list the first seven powers of 10 to see which one is
63. These powers are 10, 27, 51, 72, 63, 46, 22; so the desired logarithm is y1 = 5.

The second logarithm, log55(55), is immediate: it is simply y2 = 1.

(d) We must solve the system

x ≡ 5 (mod 8)

x ≡ 1 (mod 9)

which we can perform in the same manner as in the first problem.

due Friday 16 October. page 3 of 10

Problem Set 4 Solutions Math 158, Fall 2015

x = 5 + 8k

8k ≡ 1− 5 ≡ 5 (mod 9)

k ≡ −5 ≡ 4 (mod 9)

x = 5 + 8(4 + 9h) = 37 + 72h

x ≡ 37 (mod 72)

So the desired logarithm is log40 33 = 37 (mod 72).

4. Consider the set N, equipped with the following operation.

x ? y = max(x, y)

Show that (N, ?) satisfies all of the conditions in the definition of a group (as on page 74 of
the textbook) except one. Which condition does not hold?

Solution.

Note that if x, y ∈ N, then max(x, y) is again a positive integer, so ? does induce a well-defined
operation N×N→ N.

The identity law holds. To see this, observe that for any x ∈ N, x?1 = 1?x = max(x, 1) =
x, since all natural numbers are greater than or equal to 1 by definition. So 1 is the identity
element.

The associative law holds, because both of the expressions a ? (b ? c) and (a ? b) ? c amount
to the same thing: the maximum of the set {a, b, c}.
However, the inverse law does not hold. For a specific counterexample, 2 ? n ≥ 2 for all
n ∈ N (since the maximum of 2 and n is certainly at least as large as 2). In particular, 2 ? n
is never equal to 1. Since 1 is the identity element, this shows that 2 has no inverse. In fact,
1 itself is the only number that has a ?-inverse.

5. (a) Consider the set M consisting of all 2×2 matrices with integer entries, with the operation
· being ordinary matrix multiplication. Show that (M, ·) is not a group.

Solution.

The identity and associativity laws hold; the identity is the identity matrix (1 0
0 1). How-

ever, the inverse law fails. For example, the zero matrix (0 0
0 0) has no inverse.

(b) Let S denote the subset of M consisting of those matrices with determinant equal to
1. Show that (S, ·) is a group. (This group is usually denotes SL2(Z) and is called the
special linear group of degree 2 over Z).

Solution.

The operation of matrix multiplication gives a well-defined operation on S due to the
fact that det(AB) = detA·detB; this means that the product of two elements in S again
has determinant 1 (and integer entries), hence it again lies in S. So · is a well-defined
operation on S.

due Friday 16 October. page 4 of 10

Problem Set 4 Solutions Math 158, Fall 2015

The identity law holds with identity element I = (1 0
0 1), as is verified by checking that(

a b
c d

)
I = I

(
a b
c d

)
=

(
a b
c d

)
. The associative law holds since matrix multiplication is

associative (which amounts to the fact that matrix multiplication is defined to be the
composition of the two linear transformations described by the matrices). It remains to
verify that inverses exist.

The following formula can be used to compute the inverse of a 2× 2 matrix. There are
numerous ways to obtain this formula, such as row-reduction or an easy application of
Cramer’s rule.

(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
If M =

(
a b
c d

)
∈ S, then by definition ad − bc = 1. Therefore we have the following

particularly simple formula.

(
a b
c d

)
∈ S ⇒

(
a b
c d

)−1
=

(
d −b
−c a

)
In particular, this inverse again has integer entries, and its determinant is again ad−bc =
1, so it too lies in S. So S indeed forms a group.

(c) Show that (S, ·) is not a commutative group.

Solution.

It suffices to find a single example of two matrices that do not commute. There are
many options; here is one.

A := (1 1
0 1)

B := (1 0
1 1)

Notice that both these matrices lie in S, since they have determinant 1 and have integer
entries. Now observe what happens if we multiple them the two possible ways.

A ·B = (2 1
1 1)

B ·A = (1 1
1 2)

Since AB 6= BA, it follows that the commutative law does not hold in S.

Programming problems

6. Write a program which solves the a discrete logarithm problem, where the base of the ex-
ponentiation has a known order considerably smaller than the prime number p. Specifically,
your program will read four integers p, g, a,N , where p is a 1024 bit prime, g, a are elements
of Z/p, and N is a 32-bit integer guaranteed to be equal to the order of g modulo p. It is
further guaranteed that some power of g is congruent to a (mod p). Your program should
print an element e of Z/N such that ge ≡ a (mod p).

due Friday 16 October. page 5 of 10

Problem Set 4 Solutions Math 158, Fall 2015

Solution.

This problem can be solved with the babystep-giantstep algorithm. The only modification
needed from the 36-bit discrete logarithm problem on the previous problem set is that our
discrete logarithm function must accept one additional argument (the order N of the element
g), and it should use N is place of p−1. Here is an implementation, which differs only slightly
from the solution to last week’s problem.

import math

Computes modular inverse, using the Euclidean algorithm

def inverse(a,p):

pre = (p,0)

cur = (a,1)

while cur[0] > 0:

k = pre[0]/cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1])

pre = cur

cur = nex

assert(pre[0] == 1) # Make sure the inverse was found

return pre[1]%p

Finds indices of a common element of two lists

def coll_ind(l1, l2):

ind_of = dict()

for i in xrange(len(l1)):

ind_of[l1[i]] = i

for j in xrange(len(l2)):

if l2[j] in ind_of:

return (ind_of[l2[j]],j)

Return none if no collision found

return None

Babystep-Giantstep algorithm, where we assume order(g) <= N.

def dlp_bsgs(p,g,a,N):

Choose a "base"

B = int(math.sqrt(N))+1

Make the list of babysteps (powers of g mod p)

ge = 1 #Current power of g

bs = []

for e in xrange(B):

bs += [ge]

ge = ge*g % p

Compute g^(-B) modulo p.

due Friday 16 October. page 6 of 10

Problem Set 4 Solutions Math 158, Fall 2015

Note that ge is currenlty set to g^B%p, so we can just invert it.

h = inverse(ge,p)

Make the giantstep list

nex = a

gs = []

for e in xrange(B):

gs += [nex]

nex = nex*h % p

Find the collision and compute the result

(i,j) = coll_ind(bs,gs)

return i + B*j

I/O

p,g,a,N = map(int,raw_input().split())

print dlp_bsgs(p,g,a,N)

7. Write a program which takes as input an integer n and n pairs of integers yi,mi, and prints
a pair of integers x,m, where x (mod m) is the solution to the system of congruences x ≡ yi
(mod mi). The n integers mi are guaranteed to be pairwise relatively prime.

Solution.

This problem can be solved by first writing a function merge, which converts two congruence
conditions (a1,m1), (a2,m2) into a single congruence condition (assuming that m1 and m2

are relatively prime), and then performing this function repeatedly to collapse the full list of
congruences into one.

There are various ways to implement the merging function. One option is to mirror the
method used in problem 1. A slightly slicker way, well-suited to a computer program, is to
observe that once we use the Euclidean algorithm to solve the equation

m1u + m2v = 1,

(as we will need to do regardless, to find the inverse of one modulus with respect to the other),
we can observe that

m1u ≡ 0 (mod u) m2v ≡ 1 (mod u)

m1u ≡ 1 (mod v) m2v ≡ 0 (mod v)

from which it follows that the number a2m1u + a1m2v satisfies both congruences. This idea
is implemented in the following code.

Returns (g,u,v), where g = gcd(a,b) and g = a*u + b*v

def ext_euclid(a,b):

due Friday 16 October. page 7 of 10

Problem Set 4 Solutions Math 158, Fall 2015

pre = (a,1,0)

cur = (b,0,1)

while cur[0] != 0:

k = pre[0] / cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1],pre[2]-k*cur[2])

pre = cur

cur = nex

return pre

Merge two congruences

def merge_two(a1,m1,a2,m2):

g,u,v = ext_euclid(m1,m2)

assert(g == 1) # Doesn’t currently handle the non-coprime case

return ((v*m2*a1 + u*m1*a2)%(m1*m2), m1*m2)

Takes lists a and m; merges the conditions a[i] mod m[i]

def merge_list(a,m):

Initialize result to the "trivial congruence" 0 mod 1

res = (0,1)

for i in range(len(a)):

res = merge_two(res[0],res[1],a[i],m[i])

return res

I/O

n = int(raw_input())

y = []

m = []

for i in range(n):

yy,mm = map(int,raw_input().split())

y += [yy]

m += [mm]

res = merge_list(y,m)

print res[0],res[1]

8. Let m be any positive integer, and let G denote the set of all 2 × 2 matrices A with entries
chosen from Z/m such that the determinant of A (which you can regard as an element of
Z/m) is a unit modulo m. Then G, with usual matrix multiplication (where you should
reduce each entry modulo m after computing it in the usual way) forms a group, usually
denoted GL2(Z/m). Write a program which takes an integer m and the four entries of an
element of G and prints the inverse element in G, represented as the four entries of the matrix,
all reduced modulo m.

Note. The group G = GL2(Z/m) is usually called the general linear group of degree 2 over
Z/m. In contrast to “special linear” groups, “general linear” groups are defined by the weaker
condition that the determinant of the matrix is invertible, rather than the stronger condition

due Friday 16 October. page 8 of 10

Problem Set 4 Solutions Math 158, Fall 2015

that this determinant is exactly equal to 1.

Solution.

We can use the same formula as usual for inversion of a 2× 2 matrix:(
a b
c d

)−1
= (ad− bc)−1

(
d −b
−c a

)
.

The only difference here, compared to the real-number case, is that we should interpret
(ad − bc)−1 as the inverse modulo m, rather than the ordinary reciprocal. As usual, we can
compute this with the extended Euclidean algorithm. Here is an implementation.

Returns the inverse of a modulo m, using the Euclidean algorithm

Assumes that gcd(a,m) = 1.

def inv_mod(a,m):

pre = (a,1)

cur = (m,0)

while cur[0] != 0:

k = pre[0] / cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1])

pre = cur

cur = nex

return pre[1]%m

Inverts the matrix A = ((a,b),(c,d)) modulo m.

def inv_mat(A,m):

d = A[0][0]*A[1][1] - A[0][1]*A[1][0]

di = inv_mod(d,m)

res = [[A[1][1]*di % m, -A[0][1]*di % m],

[-A[1][0]*di % m, A[0][0]*di % m]]

return res

I/O

m = int(raw_input())

a,b = map(int,raw_input().split())

c,d = map(int,raw_input().split())

A = [[a,b],[c,d]]

B = inv_mat(A,m)

print B[0][0],B[0][1]

print B[1][0],B[1][1]

9. Let G be as in the previous problem. Write a function which takes as input the integer m, the
four entries of an element A of G, and an integer n (which may be positive or negative) and
returns the element An of G. Note that n may be quite large; you should use the fast-powering
algorithm to ensure that your program will finish in time.

Solution.

due Friday 16 October. page 9 of 10

Problem Set 4 Solutions Math 158, Fall 2015

We first need to implement matrix multiplication, i.e. a function mult(A,B) which takes two
matrices (represented, for example, by two-dimensional arrays) and returns their product
(represented the same way), as well as matrix inverse (as in the previous problem). Once this
is done, we can implement the fast powering algorithm exactly as we did before in modular
arithmetic. The only additional wrinkle is that we should accommodate negative exponents,
which can be achieved by first inverting the matrix and flipping the sign of the exponent if
the exponent is negative. Here is an implementation.

Include the functions inv_mod and inv_mat from the previous problem.

def mult_mat(A,B,m):

C = [[0,0],[0,0]]

for i in range(2):

for j in range(2):

C[i][j] = A[i][0]*B[0][j] + A[i][1]*B[1][j]

C[i][j] %= m

return C

The fast-powering algorithm, slightly modified to handle negative powers

def fast_pow(A,e,m):

Switch to inverse for a negative power

if e<0:

A = inv_mat(A,m)

e = -e

C = [[1,0],[0,1]]

while e>0:

if e%2 == 1:

C = mult_mat(C,A,m)

A = mult_mat(A,A,m)

e /= 2

return C

I/O

m = int(raw_input())

a,b = map(int,raw_input().split())

c,d = map(int,raw_input().split())

e = int(raw_input())

A = [[a,b],[c,d]]

P = fast_pow(A,e,m)

print P[0][0],P[0][1]

print P[1][0],P[1][1]

due Friday 16 October. page 10 of 10

