
Problem Set 5 Solutions Math 158, Fall 2015

Written problems

1. Textbook exercise 3.1 (same in first edition).

Solution.

(a) 97 is prime, so φ(97) = 96. To take the 19th root, we should compute 19−1 (mod 96),
which is 91, and compute as follows:

x19 ≡ 36 (mod 97)

⇒ x19·91 ≡ 3691 (mod 97)

⇒ x ≡ 3691 (mod 97) (since 19 · 91 ≡ 1 (mod φ(97)))

x ≡ 36 (mod 97)

So in fact 36 is its own 19th root modulo 97.

(b) We follow the same procedure as before. I will be somewhat more brief in the shown
steps.

x137 ≡ 428 (mod 541)

φ(541) = 540 (541 is prime)

137−1 ≡ 473 (mod 540)

⇒ x ≡ 428473 (mod 541)

x ≡ 213 (mod 541)

(c) Following the same procedure:

x73 ≡ 614 (mod 1159)

1159 = 19 · 61

φ(1159) = 18 · 60 = 1080

73−1 ≡ 577 (mod 1080)

⇒ x ≡ 614577 (mod 1159)

x ≡ 158 (mod 1159)

(d) Following the same procedure:

x751 ≡ 677 (mod 8023)

8023 = 71 · 113

φ(8023) = 70 · 112 = 7840

751−1 ≡ 7151 (mod 7840)

⇒ x ≡ 6777151 (mod 8023)

x ≡ 1355 (mod 8023)

due Friday 23 October. page 1 of ??

Problem Set 5 Solutions Math 158, Fall 2015

(e) Following the same procedure:

x38993 ≡ 328047 (mod 401227)

401227 = 607 · 661

φ(401227) = 606 · 660 = 399960

38993−1 ≡ 265457 (mod 399960)

⇒ x ≡ 328047265457 (mod 401227)

x ≡ 36219 (mod 401227)

2. Textbook exercise 3.2 (same in first edition).

Solution.

(a) By the primitive root theorem, there is a primitive root g modulo p. Since both x and
c must be units modulo p, we can defined the following discrete logarithms.

y = logg(x)

d = logg(c)

As shown on an earlier homework (problem 7 on PSet 2), these logarithms are well-
defined as elements of Z/(p− 1). We can then express the congruence we wish to solve
as follows.

xe ≡ c (mod p) (1)

⇔ gey ≡ gd (mod p) (2)

⇔ ey ≡ d (mod p− 1) (3)

The third line follows by taking discrete logarithms of both sides with respect to g.
Solving congruence ?? for x ∈ Z/p is precisely equivalent to solving congruence ?? for
y ∈ Z/(p− 1), since y uniquely determined x and vice versa.

Therefore it suffices to show that the congruence ey ≡ d (mod p − 1) has exactly
gcd(e, p− 1) solutions, assuming that it has any at all.

We have seen in problems 4 and 10 of problem set 2 that a linear congruence of this
form:

1. has a solution if and only if gcd(e, p− 1) divides d, and

2. if so, the solution may be expressed in the form y ≡ . . . (mod p−1
gcd(e,p−1)) (where the

. . . is a expression that is calculated using the Exteneded Euclidean algorithm).

We are assuming that a solution exists, so it follows that the set of all solutions is
described by a congruence class modulo p−1

gcd(e,p−1) . So if y0 is one possible value of y,

then the set of all values is {y0 +k · p−1
gcd(e,p−1)}. This gives gcd(e, p−1) distinct solutions

modulo p − 1, since k = 0, 1, 2, · · · , gcd(e, p − 1) all give values of y that are distinct
modulo p−1, while any other value of k gives a value of y differing by a multiple of p−1
from one of these.

Therefore there are gcd(e, p− 1) possible choices of y (modulo p− 1) solving congruence
??, hence also gcd(e, p− 1) possible choices of x (modulo p) solving congruence ??.

due Friday 23 October. page 2 of ??

Problem Set 5 Solutions Math 158, Fall 2015

(b) We saw in the solution to (a) that the congruence ?? has a solution if and only if
gcd(e, p − 1) divides d = logg(c). Therefore d must have the form k · gcd(e, p − 1) for
some integer k. Two valued of k give values of d that are congruent modulo p − 1 if
and only if they differ by a multiple of p−1

gcd(e,p−1) . Therefore there are p−1
gcd(e,p−1) possible

values of d for which congruence ?? has a solution. In turn, there are also p−1
gcd(e,p−1)

distinct (modulo p) nonzero values of c for which the original congruence has a solution.

Alternate solution. Consider the function (Z/p)× → (Z/p)× given by x → xe. Part
(a) implies that, for any element in the image of this map, the inverse image of that
element has exactly gcd(e, p− 1) elements in it. Since the source of the map has exactly
(p − 1) elements in it, this means that the map partitions these (p − 1) elements into
classes of size gcd(e, p − 1) elements each, according to their image under the map.
Therefore there are p−1

gcd(e,p−1) such classes (since the number of classes times the number

of elements per class must be p− 1), hence this is equal to the number of points in the
image, i.e. the number of elements c for which an eth root exists.

3. Textbook exercise 3.7 (3.6 in first edition).

Solution.

(a) Bob sends me (mod N), i.e. 892383103 (mod 2038667), which works out to 45293.

(b) The other prime is q = N/p = 2038667/1301 = 1567. So φ(N) = (1301− 1)(1567− 1) =
2035800, and the decryption exponent is e−1 (mod φ(N)), i.e. 103−1 (mod 2035800),
which works out (using the extended Euclidean algorithm) to d = 810367.

(c) The plaintext should be cd (mod N), i.e. 317730810367 (mod 2038667), which works out
(using fast powering) to 514407.

4. Textbook exercise 3.8 (3.7 in first edition).

Solution.

By trial and error, Eve may discover that N = 12191 = 73 · 167. Therefore φ(N) = 72 · 166 =
11952, and the decrypting exponent is e−1 (mod φ(N)), i.e. 37−1 ≡ 11629 (mod 11952).
Therefore the plaintext that Alice sent to Bob was cd (mod N), i.e. 58711629 (mod 12191),
which works out to 4894.

5. Textbook exercise 3.13 (3.12 in first edition).

Solution.

Eve may compute, using the extended Euclidean algorithm, that

e1u+ e2v = 1,

where u = 252426389 and v = −496549570. Therefore she can obtain the original message m
as follows.

due Friday 23 October. page 3 of ??

Problem Set 5 Solutions Math 158, Fall 2015

m ≡ m1 (mod N)

≡ me1u+e2v (mod N)

≡ (me1)u(me2)v (mod N)

≡ cu1c
v
2 (mod N)

≡ 1244183534252426389 · 732959706−496549570 (mod 1889570071)

We can compute that c−12 ≡ 1873807620 (mod 1889570071) with the extended Euclidean
algorithm, and therefore re-express the negative power as a positive power and compute m
as follows (using the fast-powering algorithm twice).

m ≡ 1244183534252426389 · 1873807620496549570 (mod 1889570071)

≡ 1031756109 · 603385073 (mod 1889570071)

≡ 1054592380 (mod 1889570071)

So this was Bob’s plaintext; Eve has been able to recover it without factoring the modulus.
She may check her answer by verifying that me1 ≡ c1 (mod N) and me2 ≡ c2 (mod N).

6. The textbook mentions that choosing e = 3 as the encryption exponent can help increase the
efficiency of RSA encryption, likely without compromising security. If Bob chooses e = 3 in
his public key, what conditions should he be sure to satisfy when choosing his modulus in
order to have a valid public key?

Solution.

Bob must ensure that gcd(3, (p− 1)(q− 1)) = 1. Since 3 is prime, the only possible values of
this gcd are 1 and 3, so this requirement amounts to saying that 3 does not divide (p−1)(q−1).
Equivalently, 3 must divide neither p − 1 nor q − 1. This is conveniently stated in terms of
congruences as follows.

p 6≡ 1 (mod 3)

q 6≡ 1 (mod 3)

Since Bob is (hopefully) not going to choose p or q to be 3 itself, this amounts to saying that
p and q should both be 2 (mod 3).

7. Textbook exercise 3.11(a) (3.10(a) in first edition). You should also solve part (b), but you
don’t need to write it up; instead you will write a program to break the cryptosystem in the
first programming problem.

due Friday 23 October. page 4 of ??

Problem Set 5 Solutions Math 158, Fall 2015

Solution.

Observe that by Fermat’s little Theorem,

g1 ≡ (gp−1)r1 (mod p)

≡ 1r1 (mod p)

≡ 1 (mod p)

and similarly, g2 ≡ 1 (mod q)

It follows form this that c1 ≡ m · 1s1 ≡ m (mod p) and similarly c2 ≡ m (mod q). Therefore,
if m′ is the number that Alice obtains by applying the Chinese Remainder theorem to solve
m′ ≡ c1 (mod p) and m′ ≡ c2 (mod q), it follows that m ≡ m′ both modulo p and modulo
q. So p and q both divide m − m′, implying that N = pq divides m − m′, i.e. m ≡ m′

(mod N). Since the message is defined as an element of Z/N , this means that indeed Alice
has constructed the original message m.

Programming problems

8. Write a program to break the cryptosystem described in problem 3.11 (3.10 in first edition).
Your program will receive a public key (but not the corresponding private key) and a cipher
text, and it should print the original plaintext.

Solution.

The key to breaking the cryptosystem lies in the first observation of the solution to (a),
namely that

g1 ≡ 1 (mod p).

Remember that Eve knows g1, since it is part of the public key. In other order p|(g1 − 1). So
Eve knows a multiple of p. But because of the Euclidean algorithm, this is almost as good
as knowing p itself: she can compute gcd(N, g1 − 1). This greatest common divisor must be
a multiple of p (since p is a common divisor), and a factor of N = pq, so it is equal to either
p or pq = N . In the second case, g1 would have to be 1 (mod N), in which case Eve can
simply observe that m = c1 and not do any more work. But if g1 6≡ 1 (mod N), then this
gcd will equal p. So Eve can compute p, then compute q as N/p. She now knows everything
that Alice knows, and hence can decipher messages.

Here is an implementation. I have omitted the code for the merge and gcd functions, since
have already been written for previous problem sets.

def analyze(N,g1,g2,c1,c2):

if g1%N == 1: return c1 # Easy special case

p = ext_euclid(g1-1,N)[0] # GCD must equal p

q = N/p

return merge(c1,p,c2,q)[0]

Extended Euclidean algorithm

due Friday 23 October. page 5 of ??

Problem Set 5 Solutions Math 158, Fall 2015

def ext_euclid(a,b):

pre = (a,1,0)

cur = (b,0,1)

while cur[0] != 0:

k = pre[0] / cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1],pre[2]-k*cur[2])

pre = cur

cur = nex

return pre

Merge two congruences (from PSet 4)

def merge(a1,m1,a2,m2):

g,u,v = ext_euclid(m1,m2)

return ((v*m2*a1 + u*m1*a2)%(m1*m2), m1*m2)

I/O

N,g1,g2 = map(int,raw_input().split())

c1,c2 = map(int,raw_input().split())

9. Write a program which determines the two prime factors p, q of an RSA modulus N = pq,
given N and φ(N). This demonstrates that computing phi is not any easier than factoring.

Solution.

We know that

N = pq

φ = (p− 1)(q − 1)

= N − p− q + 1

Hence we know the sum and the product of p and q.

p+ q = N − φ+ 1

pq = N

Now, we can recover p and q by solving a quadratic equation. Specifically, p, q are the two
solutions of the equation

0 = (x− p)(x− q)
= x2 − (p+ q)x+ pq

= x2 − (N − φ+ 1)x+N

due Friday 23 October. page 6 of ??

Problem Set 5 Solutions Math 158, Fall 2015

Since we know p+q and pq, we know the coefficients of this quadratic equation, hence we can
solve it (e.g. with the quadratic formula) and recover p and q as the two roots. The following
code implements this.

import math

def extract(N,phi):

sum = N - phi + 1

diff = int(math.sqrt(sum*sum-4*N))

return (sum-diff)/2,(sum+diff)/2

I/O

N,phi = map(int,raw_input().split())

p,q = extract(N,phi)

print p,q

10. Implement the Pohlig-Hellman algorithm. You have written all of the main ingredients in
previous programming problems. Specifically, you will be given a discrete logarithm problem
for with the modulus p is a “weak prime” in the sense that p − 1 factors into small prime
powers (all 16 bits or smaller).

Solution.

We make use of all of the function from problems 6 and 7 of the previous problem set
(babystep-giant for known-order elements, and merging lists of congruences). To save space,
I will omit this course code; see last week’s solutions for the source. What is needed from those
solutions are the functions merge list and dip bsgs, together with the auxiliary functions
needed in these.

The last helper function we need is a function to factor p − 1 and return its prime-power
factors. We can implement this by trial division, similarly to the solution of problem 6 on
PSet 1.

From here, we need only assume these pieces according to the steps listed in Theorem 2.31
of the text. The implementation is shown below.

Omitted: source for the functions merge_list(a,m) and dlp_bsgs(p,g,a,N).

See last week’s solutions for the code.

Gives a list of the prime-power factors of n.

Similar in strategy to problem 6 of problem set 1.

def pp_factors(n):

res = []

d = 2

while n>1:

dpow = 1

while n%d == 0:

dpow *= d

due Friday 23 October. page 7 of ??

Problem Set 5 Solutions Math 158, Fall 2015

n /= d

if dpow != 1: res += [dpow]

d += 1

return res

def pohlig_hellman(p,g,a):

Make list of q^e values

qe = pp_factors(p-1)

Make list of gi values and hi values (l for "list")

Determine and solve each subordinate DLP; store results in a list y.

y = []

for i in range(len(qe)):

gi = pow(g,(p-1)/qe[i],p)

hi = pow(a,(p-1)/qe[i],p)

yi = dlp_bsgs(p,gi,hi,qe[i])

y += [yi]

x,m = merge_list(y,qe)

return x

I/O

p,g,a = map(int,raw_input().split())

print pohlig_hellman(p,g,a)

11. Write a program to print the last five digits of Fn, the nth Fibonacci number. These are
defined by F0 = 0, F1 = 1, and the recurrence Fn = Fn−1 + Fn−2 for n > 1.

Hint. Express the vector
(

Fn

Fn+1

)
in terms of the vector

(Fn−1

Fn

)
using a matrix equation. Using

this equation, try to reformulate the problem in terms of one of the programming problems
from last week.

Solution.

The Fibonacci recurrence may be expressed in terms of pairs of consecutive Fibonacci numbers
using the following equation.(

Fn

Fn+1

)
=

(
0 1
1 1

)(
Fn−1
Fn

)
On the surface, this equation does not seem to help: we still will need to do approximately 264

matrix multiplications to get to Fn from F0 and F1. However, the key observation is that the
net effect of all these multiplications is to take a single large power of the matrix. Explicitly,(

Fn

Fn+1

)
=

(
0 1
1 1

)n(
F0

F1

)

due Friday 23 October. page 8 of ??

Problem Set 5 Solutions Math 158, Fall 2015

Since F0 = 0 and F1, it follows that the vector
(

Fn

Fn+1

)
is simply the second column of the

matrix

(
0 1
1 1

)n

, and in turn the number Fn is the first entry of this column. So if we can

compute this matrix, we can extract Fn as the upper-left entry.

Since we ultimately only need the remainder of Fn modulo 100, 000, we can reduce all matrices
modulo 100, 000 as well. Thus we can use the fast-powering algorithm for matrices modulo m
developed last week to compute the matrix modulo 100, 000, and then return the upper-right
entry of it. An implementation is below.

Note that it is convenient to use “formatted printing” (as noted in the online problem state-
ment) to automatically pad the resulting number with 0s in case it has fewer than 5 digits
initially.

Omitted: source for the function fast_pow(A,e,m)

for powers of 2x2 matrices modulo m.

See last week’s solutions for the code.

def fn_mod(n,m):

A = [[0,1],[1,1]]

An = fast_pow(A,n,m)

return An[0][1]

I/O

n = int(raw_input())

print ’%05d’%fn_mod(n,100000)

due Friday 23 October. page 9 of ??

