Problem Set 6 Solutions Math 158, Fall 2015

Written problems
1. Textbook exercise 3.12.

Solution.

(a) Eve must pose as Alice to Bob and Bob to Alice at each stage of the ElGamal cryp-
tosystem. Here is how this might look.

e Suppose that the parameters p, g (p a prime, g a unit of Z/p) have been chosen, and
are known to all parties.

e Alice selects her secret number a and computes A = g% (mod p). She attempts to
publish the public key A, but Eve intercepts it and prevents it from reaching Bob.

e Eve creates her own secret number e, computes £ = ¢°¢

Bob, pretending to be Alice sending her public key.

(mod p), and sends E to

e Bob chooses a message m. He believes that Alice’s public key is E, so he chooses a
random number b and computes a ciphertext (ci1,c2), where

c = gb (mod p),

¢ = En (mod p).

e Eve intercepts (c1,c2) before it reaches Alice. She uses her secret number e to
decrypt m as cac;© (mod p). She then re-encrypts m using Alice’s real public key,
by choosing her own ephemeral key f and computing (¢}, ¢;), where

¢ = g/ (modp),
&y = A'm (mod p).

She sends this ciphertext to Alice, pretending to be Bob.
e Alice decrypts (¢},) as usual to obtain m.
At the end of this process, Alice and Bob are none the wiser: Alice has received Bob’s

message m is exactly the manner that she expected. However, Eve has successfully read
the message en route.

(b) As before, Eve must insert herself between Alice and Bob and imitate each one to the
other.

e Alice selects a public key (N, e) (where she knows the prime factors of N) and a
private decrypting exponent d. She attempts to publish (IV,e), but Eve intercepts
it and prevents it from reaching Bob.

e Eve chooses her own public key (N’,¢') and private decrypting exponent d’. She
sends (N',€’) to Bob, pretending to be Alice.

e Bob chooses a message m, which he wishes to send to Alice. He believes that (N', ¢’)
is Alice’s public key, so he computes

c=m® (mod N')

and sends it to “Alice,” who is actually Eve.

due Friday 30 October. page 1 of 14

Problem Set 6 Solutions Math 158, Fall 2015

e Eve computes m as ¢ (mod N’). She then re-encrypts it as ¢ = m¢ (mod N)

using Alice’s real public key, and sends it to Alice (pretending to be Bob).

e Alice receives ¢/ and computes m as (¢/)? (mod N).

Now Alice has received Bob’s message m, and to all appearances nothing is amiss.
However, Eve has also learned the contents of m in the process.

Practical note. A student pointed out that these attacks do not sound realistic, since public
key cryptography allows public keys to be widely distributed and confirmed by multiple
sources, making it seemingly impossible for Eve to sabotage the initial key exchange. Indeed,
this is one of the many strengths of public key cryptography — man-in-the-middle attacks are
much harder to execute than they would be in symmetric cryptography. A successful attack
would likely involve something more invasive that the outline above: Eve might, for example,
hack into the directory that Bob uses to store public keys, and overwrite Alice’s public key in
that directory, prior to inserting herself in the middle of subsequent transmissions from Alice
to Bob. Depending on where and precisely how Bob stores the public keys, and how often he
checks it for tampering, this attack may be more or less plausible.

2. Prove that if N = pq, where p, ¢ are distinct odd prime numbers, then the congruence z? = 1
(mod N) has exactly four distinct solutions (modulo N).

Hint. Use the Chinese remainder theorem.

Solution.

First observe that #2 = 1 (mod pq) if and only if 2 = 1 (mod p) and 22 =1 (mod q) (this
amounts to saying that pq divides #? — 1 if and only if both p and ¢ divide 2> — 1). From
our discussion of the Miller-Rabin test, we know that 22 = 1 (mod p) if and only if z = 41
(mod p), and similarly for q.

Conversely, if z = +1 (mod p) and also (mod ¢), then 22 = 1 (mod p) and also (mod q),
and consequently 22 = 1 (mod pq).

Now, 1 # —1 (mod p) (that is why we must assume that p, ¢ # 2!), so there are two distinct
choices for the class of (mod p) and two distinct choices for the class of (mod ¢). Now,
suppose that €;,€ey are two elements of {—1,1}. Then the Chinese Remainder Theorem
guarantees that the pair of congruences

= ¢ (mod p)

= € (mod q)
has a unique solution modulo pg; the resulting z satisfies 22 = 1 (mod pq). There are four
different ways to choose €1,€2 (two choices for each), resulting in four choices of z. These
choices are distinct modulo pq since any two of them differ either modulo p or modulo gq.
We have seen above that any solution to #?> = 1 (mod pg) must solve the above pair of
congruences for one of these four choices. Hence there are exactly four such choices of .

3. For each number n between 100,000 and 100,019 (inclusive), determine how many numbers
a€{1,2,---,n—1} are Miller-Rabin witnesses (you should write some code to do this; briefly
summarize how your code works and simply copy out the resulting numbers). Which of these

due Friday 30 October. page 2 of 14

Problem Set 6 Solutions Math 158, Fall 2015

numbers are prime? Which number has the lowest proportion of witnesses, and what it this
portion?

Solution.

We can use the following function definition (as written on the board in class) to determine
whether a particular integer is a witness or not.

def is_witness(a,n):

q =n-1
k=20
while g%2 == 0:
q /=2
k+=1
b = pow(a,q,n)
if b == 1: return False
for i in xrange(k):
if b == n-1: return False
b =Dbxb % n

return True

In addition, we can write the following function to count the number of witnesses for a
particular integer n.

def num_witnesses(n):
num = 0
for a in range(l,n):
if is_witness(a,n): num += 1
return num

Having defined these two functions, we can obtain the desired figures quickly in the Python
terminal as shown.

>>> for n in range(100000,100020) :
wits = num_witnesses(n)
print n, "has", wits, "witnesses."

100000 has 99998 witnesses.
100001 has 99950 witnesses.
100002 has 100000 witnesses.
100003 has O witnesses.
100004 has 100002 witnesses.
100005 has 100002 witnesses.
100006 has 99990 witnesses.
100007 has 100004 witnesses.
100008 has 100006 witnesses.
100009 has 99954 witnesses.

due Friday 30 October. page 3 of 14

Problem Set 6 Solutions Math 158, Fall 2015

100010 has 100008 witnesses.
100011 has 100008 witnesses.
100012 has 100010 witnesses.
100013 has 100010 witnesses.
100014 has 100012 witnesses.
100015 has 100008 witnesses.
100016 has 100014 witnesses.
100017 has 100014 witnesses.
100018 has 100014 witnesses.
100019 has O witnesses.

>>>

We can immediately identify the two primes: they are the ones with no witnesses, 100003
and 100019.

When I wrote this question, I meant to ask which composite number has the lowest propor-
tion of witnesses, i.e. the smallest probability of a “false negative” when testing whether
it is composite. Since I instead asked which numbers (composite or prime) have the lowest
proportion, the answer is that the two prime numbers 100003 and 100019 have the lowest
proportion: 0.

The answer to the question I meant to ask is: among the 18 composites on the list, 100, 009
has the lowest portion of witnesses, at about 99.946%. So we can observe in this data that
the 75% guarantee in the theorem in the textbook is quite conservative as an estimate on the
prevalence of witnesses.

4. Divide the integers from 1 to 1,000,000 into ten equal intervals. For each interval, determine
how many primes are in that interval. Also determine how many of these primes are congruent
to 1 (mod 4) and how many are congruent to 3 (mod 4). Which of these tends to be a larger
number?

Note. You can use the Miller-Rabin test for this problem, but you are free to use any other
method you prefer. For example, the Sieve of Eratosthenes may be faster for this particular
problem.

Solution.

We can begin by creating a list prime of length 1,000,001 (so that it accepts indices up to
and including 1 million) telling whether or not each number is prime. One way to do with is
using the Miller-Rabin test (as implemented in problem 11). For variety, here’s another: the
following code implements an ancient algorithm to list primes called the Sieve of Eratosthenes.
I’ll omit the details of how it works, but you can read about it online if you wish.

def erat(N):
prime = [True]*(N+1)
prime[0] = prime[1] = False
for n in range(2,N+1):
if prime[n]:
k=n

due Friday 30 October. page 4 of 14

Problem Set 6 Solutions Math 158, Fall 2015
while k*n <= N:
prime[k*n] = False
k +=1

return prime
Now we can obtain the desired counts as follows in the Python terminal.

>>> for k in range(10):

reml = O
rem3 = 0
tot = 0

for n in range(100000*k+1,100000* (k+1)+1):
if prime[n]:
if n¥%4 == 1: reml += 1
if n%4 == 3: rem3 += 1
tot += 1
print "Block",k,"has",tot,"primes, including",reml,"that are 1mod4 and",
rem3, "that are 3mod4."

Block

0 has 9592 primes, including 4783 that are 1mod4 and 4808 that are 3mod4.
Block 1 has 8392 primes, including 4194 that are 1mod4 and 4198 that are 3mod4.
Block 2 has 8013 primes, including 4003 that are 1mod4 and 4010 that are 3mod4.
Block 3 has 7863 primes, including 3920 that are 1mod4 and 3943 that are 3mod4.
Block 4 has 7678 primes, including 3831 that are 1mod4 and 3847 that are 3mod4.
Block 5 has 7560 primes, including 3791 that are 1mod4 and 3769 that are 3mod4.
Block 6 has 7445 primes, including 3726 that are 1mod4 and 3719 that are 3mod4.
Block 7 has 7408 primes, including 3667 that are 1mod4 and 3741 that are 3mod4.
Block 8 has 7323 primes, including 3669 that are 1mod4 and 3654 that are 3mod4.
Block 9 has 7224 primes, including 3591 that are 1mod4 and 3633 that are 3mod4.
>>>

Note that these figures agree appear to be consistent with the predictions of the Prime Number
theorem: Hﬂiﬁ%@iﬁ ~ 0.08685 and Hﬁiﬁéiﬂiﬁ ~ 0.07238, which predicts a steady drop from
about 8700 primes per 100,000 to about 7200 primes per 100,000 over the course of this
range, which is reasonably close to the observed data.

As for the relative numbers of 1 (mod 4) primes and 3 (mod 4), two things are apparent:

(a) The figures are very close to each other in all ten cases.

(b) In seven out of ten cases (all but blocks 5,6 and 8), the 3 (mod 4) primes have a narrow
lead.

The first point is consistent with the known fact that asymptotically, these two counts should
be identical (primes distribute evently among all invertible residue classes). The second point
is not too remarkable on its own, since our sample size is small.

The question of whether, for a given n, there are more primes congruent to 1 (mod 4) or
3 (mod 4), is related to some surprisingly deep problems in number theory; surprisingly, 3

due Friday 30 October. page 5 of 14

Problem Set 6 Solutions Math 158, Fall 2015
(mod 4) is in the lead for “most” values of n (in some sense), even though that lead must
be extremely narrow. A nice survey of some related mathematics can be found in the paper
“Prime Number Races” by Granville and Martin (you can find it free online). Briefly: the
reason you might expect 3 (mod 4) to win is that all perfect squares are 1 (mod 4), and no
perfect squares are prime, so a random 3 (mod 4) number is very slightly less likely to be a
square than usual, and thus slightly more likely to be prime.

5. Textbook exercise 3.19.

Solution.

(a) Denoting the number of primes up to n as w(n) as usual, we can express P(IN) as follows.

_ 7(GN) —7(5N)
PO = TSN TIN
(N - ()
N

(Actually, this formula is only correct on the nose if N is odd, so that neither %N nor %N
are integers. If N is even, then the numerator would be m(3 N — 1) and the denominator
should be increasing by 1 since both endpoints of the interval should be included. Since
these differences change the numerator and denominator by at most 1 each, and both
tend to infinity, this quibble doesn’t affect asymptotics, so I will permit myself to assume
the formula is correct as written and not fuss over it.)

Hence we wish to evaluate the limit of the following expression.

P(N) _ m(3N) w(3N)
1/In(N) N/In(N) N/In(N)

From the Prime Number Theorem, we know the following two limits.

gy
im 5y = 1
1
=N
tim 2

In order to compare these two limits to the limits of the expressions appearing in equation
(1), we must compare In(3) and In(3N) to In N. This can be done by observing that for
any constant ¢ (e.g. 3 or 3),

lim InN m In N
Noooln(cN) ~ Nooolne+InN

=1

due Friday 30 October. page 6 of 14

Problem Set 6 Solutions Math 158, Fall 2015

We can use this fact to evaluate the needed limits as follows. Here c is any constant; we

will need to use ¢ = % and ¢ = %

lim 7(6]\7) = lim (N) i In(cN)
Nooo N/In(N) ~ N-oo N/In(N) N In(N)
— lim m(eN) ln(cN)
~ Nooo |[N/In(N) In(N)
_w(eN)
= 1 -
NSoo N/In(cN)
B i m(cN)
s o ¢N/1In(cN)
= ¢
Hence in our case, this gives
b | TGN mGN) |3 1
N5oo | N/In(N) N/In(N)| 2 2
which gives the desired result: lim M =
N—o0 1/ln()

(b) The denominator should actually be the same as in part (a): it is 1/In(N). For any
choice of ¢y, co, the limit of this probability is approximately the “probability that the
number N is prime,” i.e. 1 out of In N. To prove this statement (which you were not
required to do for this problem), you can follow the exact same logic as in part (a),
showing that

P(Cl,CQ;N) N 1 W(CQN) _ 7T(61N)
1/InN c—c |[N/InN N/InN

and the limit of this expression as N — oo is C;Cl [ca — 1] = 1.

6. Textbook exercise 3.20, parts (a), (b) and (c).

Solution.Note that in case, you need only formulate the statement; you do not need to prove
it. In all three cases, the numbers % and % can be replaced with any two positive constants
with ¢; < cg, with no other changes to the statement.

(a) Let Py,gq(N) denote the probability that an odd integer, chosen uniformly at random
Foaa(N) _
(b) Let Pi mod 3(N) denote the probability that an integer, chosen uniformly at random
among all integers n congruent to 1 (mod 3) in the interval [%N) %N], is prime. Then
1; P mod 3(N)
im ——————=
N-ooo 3/(2InN)

from all of the odd numbers in [N, 3N], is prime. Then l

=1.

due Friday 30 October. page 7 of 14

Problem Set 6 Solutions Math 158, Fall 2015

(¢) Let P; moq 6(IN) denote the probability that an integer, chosen uniformly at random
among all integers n congruent to 1 (mod 6) in the interval [%N , %N |, is prime. Then
. Pl mod G(N)
lim ——F———— =1
Nose 3/InN

7. Textbook exercise 3.21.

Solution.

(a) Integrating the dt term by parts, we obtain:
X dt t 1% X 11
T e B e K.
o Int Int|, 2 (Int)? ¢
ST N
 InX 2 J, (Int)?
2

Since =5 is constant, it is certainly bounded by a constant, so it is O(1).

(b) We can break the integral into two pieces, one from 2 to v/X and the other from v/ X to
X, and bound each one using the fact that

b
/ ft)dt < (b—a) - (maximum value of f(t) on [a,b]),

which can be visualized by placing the area under the curve underneath a rectangle.
Since ﬁ is a decreasing function, the maximum value of each piece is easy: it is just

ﬁ evaluated at the left endpoint. Using the suggested endpoints gives the following

bounds.

VX 1
L it < aptVX-2)

IN

X - 1
/\/Y (Int)? o <ln \/X')
X

< g
(% In X)
4X
<
T (InX)?

mor? = moe T imx)

/X 1 VX 4X
=
2

From this it follows that

due Friday 30 October. page 8 of 14

Problem Set 6 Solutions Math 158, Fall 2015

fz lnt < VX InX 4X InX

X/lnX S m2? X Tmxe x
In X n 4
(In2)2y/X InX
. f2 1nt2dt . In X 4
= lim < lim .
X—o00 X/IHX X—o00 (1n2)2\/7 In X

(assuming that both limits exist, which will be a consequene of what follows).

Now, observe that hm —— = 0 (this follows, for example, from applying I'Hopital’s
—>oo \F

rule), and 1im x 00 s = 0 since the denominator tends to infinity. So it follows that
(since it is a positive function of X bounded above by a function tending to 0),

X 1
lim f2 (Int)? dt _

From this it follows, using part (a), that

Lo L) L [X/WX 2/l f2 T
X—oo X/InX =~ X5 | X/InX X/lnX X/In X
- 2 /X)5 e
- ;gféo(l)_mz;}ﬂnoo< X >+Xlgnoo X/In X
= 1-0+0
= 1

(¢) According to formula 3.12, if the Riemann Hypothesis is true, then

7(X) :/2 ﬁ+(9(\/7(1nX).

Int

If this is true, then it follows that

x) Lo YXnX

X/In X X/In X X/In X
s i, o ((0X)?
X/InX VX)

This means that for sufficiently large X, there exists a constant C such that

due Friday 30 October. page 9 of 14

Problem Set 6 Solutions Math 158, Fall 2015

X X
9 1% _c. (In X)?) lﬁ—tt L. (In X)?
X/InX VX T /X = X/InX VX
(In X)2

Now lim

X —o00 \/)?

once). Therefore the limit of the left side and the limit of the right side both equal

= 0 (e.g. by taking the square root and applying I'Hopital’s rule

X dt
Xgnoo XQ/Iﬁ’ which is equal to 1 by part (b). From the squeeze theorem, it follows
that lim "2 1 which is the pri ber th
at lim = ich is the prime number theorem.
Xooo X/InX " P

8. Textbook exercise 4.1.

Solution.

(a) The modulus is N = 541 - 1223 = 661643. The private signing key is the inverse of
e = 159853 modulo ¢(NN) = (541 — 1)(661643 — 1) = 659880, which is d = 561517.

(b) The signature for D = 630579 is D¢ (mod N), i.e. 630579°61517 = 206484 (mod 661643).
So the signature is S = 206484.

9. Textbook exercise 4.2.

Solution.We can check each signature as follows.

5S¢ = 87645387953 = 772481 (mod 1562501)
(8")¢ 8700995793 = 161153 (mod 1562501)
(8")¢ = 602754873 = 586036 (mod 1562501)

The first signature is not valid, since S€ is not congruent to D, which is 119812. The second
and third are correct signatures, since the result of the exponentiation matches the document.

Programming problems

10. Write a program to decipher an RSA message sent to you using your public key. You will
be given your public key, as well as the two prime numbers that you used to create it, and a
cipher text c.

Solution.

To decrypt, you must first finding an inverse d of e modulo ¢(N) = (p — 1)(¢ — 1), and then
compute ¢? (mod N). This is done in the following code.

Remark. As the textbook points out, you might obtain a mild performance improvement by
first calculating L = % (this is the least common multiple of p — 1 and ¢ — 1) and
letting d be e~! (mod L) rather than e! (mod (p — 1)(q — 1)). This change does not affect

the correctness of the decryption.

due Friday 30 October. page 10 of 14

Problem Set 6 Solutions Math 158, Fall 2015

Inverses modulo m.
def inv_mod(a,m):
pre = (a,1)
cur = (m,0)
while cur[0] != O:
k = pre[0] / cur[0]
nex = (prel[0]-k*cur[0],prel[1]-k*cur[1])
pre = cur
cur = nex
return prel[1]%m

Finds the deciphering exponent d, using p,q and the enciphering exponent.
def private_exp(p,q,e):

phi = (p-1)*(q-1)

return inv_mod(e,phi)

def decipher(c,p,q,e):
d = private_exp(p,q,e)
return pow(c,d,p*q)

I/0

N,e = map(int,raw_input().split())
p,q = map(int,raw_input().split())
¢ = int(raw_input())

print decipher(c,p,q,e)

11. Write a program that determines whether a given integer (up to 1024 bit in size) is prime or
not.

We first need the function is_witness(a,n) written out in class. To check primality, we can
just try 50 possible witnesses, and return false if we find a single witness. In practice, many
fewer than 50 would work just as well (5 would be enough, even 3 would probably be fine).

import random
random.seed ()

def is_witness(a,n):
q = n-1
k=0
while g%2 == 0:
q /=2
k += 1
b = pow(a,q,n)
if b == 1: return False

due Friday 30 October. page 11 of 14

Problem Set 6 Solutions Math 158, Fall 2015
for i in xrange(k):

if b == n-1: return False
b=5bxb % n
return True

def is_prime(n):
for i in xrange(50): # 50 is many more than really necessary
a = random.randrange(1,n)
if is_witness(a,n): return False
return True

I/0

n = int(raw_input())

if is_prime(n): print ’prime’
else: print ’composite’

12. Write a program that generates three numbers p, g, g with the following properties.

e p and ¢ are primes of specified length in bits.
e p=1 (mod g)
e g € Z/p has order ¢ modulo p.

Your program will receive the desired lengths (number of bits) for p and ¢, and should print
p,q and g.

Hint. See the solution to problems 5 and 6 on problem set 3; these should help you see how
to construct the number g once you have chosen p and q.
Solution.

We can proceed in three stages.

1) Choose integers ¢ at random from [29Pits—1 2dPits) ynti] we find one that is prime.
2pbitsfl_1 2pbits_1
a0 q

2) Choose integers k at random from |
kq + 1 is prime. Use this value as p.

) until we find one such that p =

3) Choose integers a at random from (0, p) until we find one such that a?~1/9 # 1 (mod p).
Then let g = aP~D/1 (mod p); it is guaranteed to have order q.

The first stage is self-explanatory; it merely requires the use of the code from the previous
problem. The second step has one tricky aspect to it: the endpoints of this interval are not
integers, so which performing integer division there is a risk that you will round the wrong
direction and end up with inadmissable value of k in being chosen. There are a few ways to
fix this. Perhaps the easiest to code is the following observation: if you want to compute the
ceiling of a quotient a/b (where a, b are integers), i.e. the fraction rounded up to the nearest
integer, one way to achieve this in code is to write (a+b-1)/b. Adding b— 1 to the numerator
causes it to get rounded up to the next multiple of b, except in the case where a is already a
multiple of b, in which case the result will be rounded down to example a/b. Other ways to

due Friday 30 October. page 12 of 14

Problem Set 6 Solutions Math 158, Fall 2015
deal with the rounding issue include computing the fractions as floating-point numbers and
then rounding them up or down, or simply rounding down as usual and then adding 1 to the
lower bound.

The first two steps are implemented as the functions make_q(gbits) and make p(pbits,q)
below.

The third step also bears some explanation. We saw on homework 3 that if a is a primitive
root, then a?~1/4 is an element of order ¢. This suggests one way to find an element of order
q: first find a primitive root a, then exponentiate it. This is undesirable, however, since to
find a primitive root usually requires factoring p — 1, which it would be best not to have to
do.

The key observation is that we actually don’t need a to be a primitive root. All we need is
that g = a®~1/7 #£ 1 (mod p). If this is so, then certainly g¢ = 1 (mod p), so g will have
order g since its order is not 1. So we can just choose values of a at random. We know that
we're likely to succeed (since there’s an ample supply of primitive roots, and any one of them
will do), but we can tell whether we’ve succeeded without knowing whether we actually chose
a primitive root or not (possibly we didn’t, but we don’t care since we still got a working
value of g).

The third step is implemented as make_g(p,q) below. Finally, we assemble these three steps
using the function make params(gbits,pbits).

import random
random.seed ()

Omitted: source for is_prime(n) (see previous problem),
#it# and its helper function, is_witness(a,n).

def make_q(gbits):
while True:
q = random.randrange (2**(gbits-1),2**qbits)
if Q%2 == 0: q += 1
if is_prime(q): return q

def make_p(pbits,q):
while True:

minP = 2**(pbits-1)

maxP = (2%*xpbits)-1

minK = (minP+q-2)/q # This is the ceiling of (minP-1)/q
maxK = (maxP-1)/q

k = random.randrange (minK,maxK+1)

p = kxq + 1

if is_prime(p): return p

def make_g(p,q):
while True:

due Friday 30 October. page 13 of 14

Problem Set 6 Solutions Math 158, Fall 2015
b = random.randrange(2,p)

a = pow(b, (p-1)/q,p)

if a != 1: return a

def make_params(gbits,pbits):

q = make_q(gbits)
p = make_p(pbits,q)
g = make_g(p,q)

return p,q,g

I/0

gbits,pbits = map(int,raw_input().split())
P,d,g = make_params(gbits,pbits)

print p,q,g

due Friday 30 October. page 14 of 14

