
Problem Set 8 Solutions Math 158, Fall 2015

Written problems

1. Textbook exercise 4.7.

Solution.

If S1, S2 are as in the problem statement, then using the fact that A ≡ ga (mod p),

AS1SS2
1 ≡ gaS1

(
giAj

)S2
(mod p)

≡ gaS1+iS2+ajS2 (mod p)

≡ gaS1−ij−1S1−aS1jj−1
(mod p)

(
since S2 ≡ −S1j−1 (mod p− 1)

)
≡ g�

�aS1−ij−1S1−��aS1 (mod p)

≡ g−ij−1S1 (mod p).

We can now see the wisdom in the use of the number j here: it’s presense in both S1 and S2
is perfectly calibrated to cause the terms with the secret key a to cancel. This is what allows
Eve to find her document D without needing to know anything about a. In particular, the
choice D ≡ −ij−1S1 (mod p− 1) ensures that AS1SS2

1 ≡ gD (mod p).

Observe that D depends on i and j is a rather complicated way – both appear as both
coefficients and exponents in the expression for D. Therefore it is hopeless for Eve to try to
rig them up to give her a specific document D.

2. Textbook exercise 5.24.

Solution.

We can interpret the data in the problem statement as probabilities as follows.

Pr(Urn 1) = Pr(Urn 2) =
1

2

Pr(Pencil|Urn 1) =
7

10

Pr(Pencil|Urn 2) =
4

12
=

1

3

These will be the inputs needed to calculate the probabilities in the problem.

(a) Using equation 5.20 from the textbook:

Pr(Pencil) = Pr(Pencil|Urn 1) Pr(Urn 1) + Pr(Pencil|Urn 2) Pr(Urn 2)

=
7

10
· 1

2
+

1

3
· 1

2

=
31

60
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(b) Using Bayes’ formula and part (a):

Pr(Urn 1|Pencil) = Pr(Pencil|Urn 1)
Pr(Urn 1)

Pr(Pencil)

=
7

10

1/2

31/60

=
7

10
· 30

31

=
21

31
.

(c) We can write the following conditional probabilities involving two pencils, by counting
outcomes in each of the two cases.

Pr(Two pencils|Urn 1) =

(
7

2

)
/

(
10

2

)
=

21

45

=
7

15

Pr(Two pencils|Urn 2) =

(
4

2

)
/

(
12

2

)
=

6

66

=
1

11

Therefore, proceeding as in part (a):

Pr(Two pencils) = Pr(Two pencils|Urn 1) Pr(Urn 1) + Pr(Two pencils|Urn 2) Pr(Urn 2)

=
7

15

1

2
+

1

11

1

2

=
92

330

3. Textbook exercise 5.28.

Solution.

Once m is chosen, the outcomes of each run of the algorithm are independent events. There-
fore:

Pr(No N times|m has property A) ≤ (1− p)N

Pr(No N times|m doesn’t have property A) = 1

Therefore, applying Bayes’ formula gives the following.
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Pr(Ac|N times) = Pr(N times|Ac)
Pr(Ac)

Pr(N times|A) Pr(A) + Pr(N times|Ac) Pr(Ac)

≥ 1 · δ

(1− p)N (1− δ) + 1 · δ

≥ δ

(1− p)N (1− δ) + δ

4. Textbook exercise 5.29.

Solution.

(a) Using the formula from the previous problem, this probability is at least 9/10

( 1
4
)25 1

10
+ 9

10

=

9
10/425+9

.

(b) This new probability would be 9
10/4100+9

. This might as well be equal to 1.

(c) The probability that m does not have property A, given N negative test results, is at

least 99/100
1

100·2N
+ 99

100

= 99
2−N+99

. In fact, whenever N ≥ 0 this is at least 99/100, so in fact

you are 99% confident before doing any experiments at all (this makes sense, since your
prior assumption is that there is a 99% chance that m does not have property A, and
negative test results will only increase the certainty of your belief).

(d) We must solve the inequality 99
2−N+99

≥ 1 − 1
1,000,000 . This is equivalent to 1

1,000,000 ≥
2−N

2−N+99
= 1

1+99·2N , i.e. 1+99·2N ≥ 1, 000, 000. The minimum suchN is log2(999, 999/99) =
log2(10, 101) ≈ 13.3. So N = 14 is sufficient to ensure that the odds of a million to one
that m does not have property A.

5. Textbook exercise 5.39.

Solution.

The number 304 is a collision: it is both g234 and hg399 (mod p). Therefore h ≡ g234−399

(mod 811), so the discrete logarithm is−165 ≡ 645 (mod 810). Indeed, 10645 ≡ 106 (mod 811).

6. Suppose that n is an odd integer greater than 1, and that we are selecting an element a ∈ Z/n
uniformly at random. This problem will investigate the probability that a is a unit. Let
p1, p2, · · · , p` be the distinct prime factors of n (e.g. if n = 45, ` = 2 and the primes are 3
and 5; note that 3 occurs only once in the list even though 32 divides n).

(a) Let Ei denote the event that pi does not divide a, and let F denote the event that a is
a unit modulo n. Prove that F = E1 ∩ E2 ∩ · · · ∩ E`.

Solution.The number a is a unit if and only if it has no common factor with n. This is
equivalent to having to common prime factor. This is equivalent to saying that for each
i, pi - a. Therefore F holds if and only if each Ei holds, i.e. F is the intersection of the
events Ei.
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(b) Prove that the probability of F is equal to the product of the probabilities of the Ei (a
stronger fact is that the events Ei are independent events, which is one way to prove
this).

Solution.

Let P = p1p2 · · · p`. Since P = p1p2 · · · p` divides n, it follows that all of the resides classes
(mod P ) are equally likely to occur as the residue of a when a is selected uniformly at
random. Now, the resides a%P is uniquely determined by the residues ai = a%pi,
and every possible choice of this list a1, a2, · · · , a` occurs exactly once, by the Chinese
Remainder Theorem. Therefore we may regard the ` values a1, a2, · · · , a` as uniformly
distributed independent random variables. The event Ei is precisely the event that
ai 6= 0, hence all of these events are independent. It follows that Pr(E1 ∩ · · · ∩ E`) =
Pr(E1) Pr(E2) · · ·Pr(E`).

(c) Compute the probability of Ei and deduce a formula for the probability of F .

Solution.

The probability that ai = 0 is 1
pi

, so the probability of Ei is 1− 1
pi

, and the probability
of F is

Pr(F ) =
∏̀
i=1

(
1− 1

pi

)
.

(d) Use this formula to deduce a formula for φ(n) in terms of n and the primes pi.

Solution.

φ(n) = n
∏̀
i=1

(
1− 1

pi

)
.

Another common way to write this is φ(n) =
∏`

i=1 p
ei−1
i (pi − 1), where ei is the multi-

plicity of pi in the prime factorization of n.

Remark. At various times while discussing RSA, we allowed ourselves to assume that the
message transmited is a unit modulo N . Part (c) of this problem justifies why this is a
reasonable assumption, given the size of the primes in RSA.

7. Suppose that n and pi are as in the previous problem. Suppose that we are choosing an
integer a uniformly at random from the unit group (Z/n)×. This problem will investigate the
probability that a is a square, i.e. that x2 ≡ a (mod n) has a solution.

(a) Let Ei denote the event that x2 ≡ a (mod pi) has a solution and let F denote the event
that x2 ≡ a (mod n) has a solution. Prove that F ⊆ E1 ∩ · · · ∩ E`. (Note. In fact,
these events are identical, so we could write = instead of ⊆, but this is more difficult to
prove.)

Solution.

Suppose that a ∈ F , i.e. a is a square modulo n. It suffices to show that a ∈ Ei for
each i, which will imply that a lies in the intersection of these sets, by definition. Now,
if a ∈ F , then there exists x such that a ≡ x2 (mod n). But being congruent modulo n
implies beign congruenct modulo any factor of n (by the transitivity of divisibility), so
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in fact a ≡ x2 (mod pi) for all i (with the same value of x). This means that event Ei

holds. Hence a ∈
⋂
Ei. It follows that F ⊆

⋂
Ei.

(b) Assume that the probability of Ei is 1
2 (I encourage you to try to prove it, but you are

free to assume it without proof). Prove that

Pr(F ) ≤ 1

2`
.

(you should proceed in a similar manner as in the previous problem).

Solution.

Define ai = a%pi as in the solution of part (b) of the previous problem. Then as before,
these are independent random variables, each uniformly distributed among the units
modulo p. Now, the event Ei depends only on the variable ai, since it is a property
of a (mod pi). Hence these events are independent, and Pr(

⋂
Ei) =

∏
Pr(Ei). By

assumption, each of these Pr(Ei) is 1
2 , so Pr(

⋂
(Ei)) = 1

2`
. By part (a), Pr(F ) ≤

Pr(
⋂
Ei), hence Pr(F ) ≤ 1

2`
.

Addendum: here is a proof of the assumption. We first claim that if p is an odd prime
and a 6≡ 0 (mod p), then x2 ≡ a (mod p) has either 2 or 0 solutions. To see this,
observe that x0 is one solution, then any other solution x satisfies x2 ≡ x20 (mod p),
hence (x− x0)(x+ x0) ≡ 0 (mod p), so p divides either x− x0 or x+ x0, meaning that
x is either x0 or −x0 (mod p). This shows that there are at most two solutions. But
conversely, if x0 is one solution, then −x0 is a second solution (these are not equal since
p 6= 2; this is the only place where we must assume that p 6= 2). This proves the claim
(we could also cite the result of exercise 3.2 in the textbook, i.e. Problem Set 5, problem
2). Now, consider the function f(x) = x2%p. Then as x varies over 1, 2, · · · , p− 1, this
function achieves each element in its range exactly twice, by the claim. But this means
that the total number of elements in the range is one half of the number of elements in
the domain. Therefore the size of the range is (p − 1)/2. Thus the number of square
units modulo p is exactly half the number of units modulo p.

Remark. We discussed a collision algorithm in class that can factor n if two different integers
a, b are found such that a2 ≡ b2 (mod n). This algorithm is more likely to succeed if there
are relatively few squares modulo n (hence greater odds of a collision). This problem shows
that this algorithm is most effective when n has many distinct prime factors, since a smaller
fraction of the units are squares. In particular, this algorithm poses little danger to RSA
keys.

8. Suppose that p, q are two prime numbers such that p ≡ 1 (mod q). Suppose that we choose
an element a from (Z/p)× uniformly at random.

(a) What is the probability that ordp(a) = q?

(b) What is the probability that ordp(a
(p−1)/q) = q?

Remark. This shows why the suggested approach to finding DSA parameters (as in PSet 6
number 12) is better than choosing a at random until you find one that is order q.
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Solution.

By problem set 5, problem 2 (problem 3.2 in the textbook), the number of solutions to the
equation xe ≡ 1 (mod p) is equal to gcd(e, p − 1) (the problem cited guarantees that this
is the number of solutions whenever there are any solutions at all, and we know that one
solution exists, namely x = 1). In particular, assuming that e | (p− 1), we deduce that there
are exactly e solutions. This is the key fact in both calculations.

(a) The order of a is q if and only if aq ≡ 1 (mod p) but a 6≡ 1 (mod p) (since q is prime,
the only possible orders of an element such that aq ≡ 1 are 1 and q, so we only need
to rule out 1). Since q | (p − 1), there are q elements a such that aq ≡ 1 (mod p), and
one of them is a = 1. So there are q − 1 elements of order q; the probability of finding
one is q−1

p−1 . For q, p as in DSA, this probability is negligible since p is many orders of
magnitude larger than q; this is not a good way to find order-q elements.

(b) Since (a(p−1)/q)q ≡ 1 (mod p) (by Fermat’s little theorem), we know that the order of
a(p−1)/q is either 1 or q. Therefore a(p−1)/q (mod p) has order q if and only if it is not
1. Now, since p−1

q is a factor of p − 1, the number of a such that a(p−1)/q ≡ 1 (mod p)

is exactly p−1
q , hence the probability that a(p−1)/q ≡ 1 (mod p) is exactly 1

q when a is

chosen uniformly among all p− 1 units. Therefore the probability that a(p−1)/q (mod p)
has order equal to q is 1 − 1

q . In contrast to part (a), this is essentially a sure thing,

given that q is typically chosen to be at least on the order of 2160.

9. Suppose that Samantha signs M different documents with the same DSA public key. Suppose
the number of possible ephemeral keys is N . We have seen that she must be sure not to use
the same ephemeral key twice.

(a) Suppose that k1, · · · , kM are the ephemeral keys that Samantha chooses. Assume that
each was chosen uniformly at random from all N possible choices. Calculate the expected
value of the number of pairs {i, j} of two distinct indices such that ki = kj .

Solution.

There are
(
M
2

)
pairs {i, j}, and the probability that any particular pair gives ki = kj

is 1
N . By linearity of expectation, the expected value of the number of such pairs is

therefore
(
M
2

)
/N .

(b) Prove that the probability that some two keys are the same is less than your answer
from part (a).

Solution.

One equivalent way to express the expected value from part (a) is formula 5.27 form the
textbook, which says in this case:

E(equal pairs) =

(M2 )∑
n=0

n · Pr(there are exactly n matching pairs)

Now, the events “there are exactly n matching pairs” are disjoint events. Therefore we
can obtain the probability that there is at least one matching pair as their sum (for
n > 0):
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Pr(at least one matching pair) =

(M2 )∑
n=1

Pr(there are exactly n matching pairs)

But we can now compare these formulas, by noting simply that the coefficient n in the
first is at least 1 whenever n 6= 0.

E(equal pairs) =

(M2 )∑
n=0

n · Pr(there are exactly n matching pairs)

=

(M2 )∑
n=1

n · Pr(there are exactly n matching pairs) (the n = 0 term is equal to 0)

>

(M2 )∑
n=1

1 · Pr(there are exactly n matching pairs)

> Pr(at least one matching pair)

It follows that the probability that some two keys are equal is less than
(
M
2

)
/N . In fact,

the probability is very close to this expected value when M is relatively small, because
the contributions to the expected value coming from the possibility that there are more
than one matching pair is extremely small.

(c) Suppose that M = 232 (this is what M would be if Samantha signs one document per
second for 120 years). Suppose that the parameters (p, q) used for DSA are such that
p is 512 bits long and q is 160 bits long (as in the original DSA standard from 1991).
Show that the probability that Samantha ever chooses the same ephemeral key twice is
less than 1

296
.

Solution.

From the previous part, this probability is less than
(
M
2

)
, which is less than 1

2M
2 = 263.

Since q is 160 bits long, we know that q > 2159, so q− 1 ≥ 2159. The number of possible
ephemeral keys is q − 1, so N ≥ 2159. It follows that

(
M
2

)
/N < 263/2159 = 2−96, which

therefore furnishes a rather strong upper bound on the probaility of this mistake. For
all practical purposes, this probability is zero.

Remark. These odds are a lot worse for Samantha if she doesn’t choose a good random
number generator.

10. Textbook exercise 6.1.

Solution.

(a) We wish to compute (0, 2)⊕ (3,−5).
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Secant slope is:

λ =
(2)− (−5)

(0)− (3)

= −7/3

The third intersection point is:

x3 = (−7/3)2 − (0)− (3)

= 22/9

y3 = (−7/3) · (22/9) + (2)

= −− 100/27

⇒ (0, 2)⊕ (3,−5) = (22/9, 100/27)

(b) First, we wish to compute P ⊕ P = (0, 2)⊕ (0, 2).

Tangent slope is:

λ =
3 · (0)2 +−2

2 · (2)

= −1/2

The third intersection point is:

x3 = (−1/2)2 − (0)− (0)

= 1/4

y3 = (−1/2) · (1/4) + (2)

= 15/8

⇒ (0, 2)⊕ (0, 2) = (1/4,−15/8)

Next, we wish to compute Q⊕Q = (3,−5)⊕ (3,−5).

Tangent slope is:

λ =
3 · (3)2 +−2

2 · (−5)

= −5/2

The third intersection point is:

x3 = (−5/2)2 − (3)− (3)

= 1/4

y3 = (−5/2) · (1/4) + (5/2)

= 15/8

⇒ (3,−5)⊕ (3,−5) = (1/4,−15/8)
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This is not a typo; in fact P ⊕ P = Q⊕Q, which is an unusual coincidence.

(c) To find P ⊕P ⊕P , use the answer to part (b); we wish to compute (1/4,−15/8)⊕ (0, 2).

Secant slope is:

λ =
(−15/8)− (2)

(1/4)− (0)

= −31/2

The third intersection point is:

x3 = (−31/2)2 − (1/4)− (0)

= 240

y3 = (−31/2) · (240) + (2)

= −− 3718

⇒ (1/4,−15/8)⊕ (0, 2) = (240, 3718)

To find Q⊕Q⊕Q, use the answer to part (b) again; we wish to compute (1/4,−15/8)⊕
(3,−5).

Secant slope is:

λ =
(−15/8)− (−5)

(1/4)− (3)

= −25/22

The third intersection point is:

x3 = (−25/22)2 − (1/4)− (3)

= −237/121

y3 = (−25/22) · (−237/121) + (−35/22)

= 845/1331

⇒ (1/4,−15/8)⊕ (3,−5) = (−237/121,−845/1331)

11. Textbook exercise 6.2.

Solution.

(a) To find P ⊕Q, we wish to compute (−1, 4)⊕ (2, 5).
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Secant slope is:

λ =
(4)− (5)

(−1)− (2)

= 1/3

The third intersection point is:

x3 = (1/3)2 − (−1)− (2)

= −8/9

y3 = (1/3) · (−8/9) + (13/3)

= 109/27

⇒ (−1, 4)⊕ (2, 5) = (−8/9,−109/27)

To find P 	Q, note that 	Q = (2,−5). So we wish to compute (−1, 4)⊕ (2,−5).

Secant slope is:

λ =
(4)− (−5)

(−1)− (2)

= −3

The third intersection point is:

x3 = (−3)2 − (−1)− (2)

= 8

y3 = (−3) · (8) + (1)

= −− 23

⇒ (−1, 4)⊕ (2,−5) = (8, 23)

(b) To find 2P = P ⊕ P , we wish to compute (−1, 4)⊕ (−1, 4).

Tangent slope is:

λ =
3 · (−1)2 + 0

2 · (4)

= 3/8

The third intersection point is:

x3 = (3/8)2 − (−1)− (−1)

= 137/64

y3 = (3/8) · (137/64) + (35/8)

= 2651/512

⇒ (−1, 4)⊕ (−1, 4) = (137/64,−2651/512)
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To find 2Q = Q⊕Q, we wish to compute (2, 5)⊕ (2, 5).

Tangent slope is:

λ =
3 · (2)2 + 0

2 · (5)

= 6/5

The third intersection point is:

x3 = (6/5)2 − (2)− (2)

= −64/25

y3 = (6/5) · (−64/25) + (13/5)

= −− 59/125

⇒ (2, 5)⊕ (2, 5) = (−64/25, 59/125)

For the bonus, here is a complete list of integral points:

(−2, 3), (−1, 4), (2, 5), (4, 9), (8, 23), (43, 282), (52, 375), (5234, 378661)

and their inverses:

(−2,−3), (−1,−4), (2,−5), (4,−9), (8,−23), (43,−282), (52,−375), (5234,−378661)

12. Textbook exercise 6.4. (You can use whatever computing equipment you wish to help sketch
the pictures).

Solution.

Here are some graphs from Wolfram Alpha. Note that the last two are singular; they are
the so-called nodal cubic and cuspidal cubic curves. They are not suitable for cryptography;
although you can define a group law on them (after removing the singular point), the discrete
logarithm problem is too easy to solve for them (specifically, they can both be given a rational
parameterization, which makes the discrete logarithm problem easy to solve afterward).
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(a)

(b)
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(c)

(d)

(e)
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Programming problems

13. Given integers A,B, and p, and two points P,Q on the elliptic curve Y 2 = X3 + AX + B
over Fp, compute the sum P ⊕Q.

Solution.

We must implement the formulas from the textbook. One tricky aspect is to make sure that
the edge cases are dealt with properly. Below I’ve shown one way to deal with them: first
check whether one of the two points is O, then compute the numerator and denominator of
the slope of the line through P and Q (which may be a tangent line if P = Q), return O
if the denominator would be 0 (i.e. the line, secant or tangent, is vertical), and otherwise
computing and inverting the third intersection point.

I omit the source for the inv mod(a,m) function, since it has been shown several times before.

### Omitted: code for inv_mod(a,m) (modular inverse)

def add(P,Q,A,B,p):

if P==0: return Q

if Q==0: return P

if P==Q:

x = P[0]

y = P[1]

dy = (3*x*x + A) % p

dx = (2*y) % p

else:

dy = (P[1]-Q[1]) % p

dx = (P[0]-Q[0]) % p

if dx == 0: # Vertical tangent/secant line

return 0

sl = (dy*inv_mod(dx,p)) % p #Slope of line

it = (P[1] - P[0]*sl) % p #y-intercept of line

x = (sl**2 - P[0]-Q[0]) % p

y = (-(sl*x+it)) % p

return (x,y)

### I/O

def read_point():

ls = map(int,raw_input().split())

if len(ls) == 2: return tuple(ls)

else: return 0

A,B,p = map(int,raw_input().split())

P = read_point()

Q = read_point()

R = add(P,Q,A,B,p)
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if R==0: print 0

else: print R[0],R[1]

14. Given A,B, p as before, one point P on the elliptic curve, and an integer n (positive or
negative), compute the point nP .

For this, we essentially duplicate the code of the fast-powering algorithm from modular arith-
metic, replacing modular multiplication with Elliptic curve addition.

### Omitted: soure for all functions from the previous problem.

def inv_pt(P,A,B,p):

if P == 0: return 0

return (P[0],(-P[1])%p)

def mult(P,n,A,B,p):

if n<0:

P = inv_pt(P,A,B,p)

n = -n

res = 0

while n > 0:

if n%2 == 1:

res = add(res,P,A,B,p)

n /= 2

P = add(P,P,A,B,p)

return res

### I/O

def read_point():

ls = map(int,raw_input().split())

if len(ls) == 2: return tuple(ls)

else: return 0

A,B,p = map(int,raw_input().split())

P = read_point()

n = int(raw_input())

res = mult(P,n,A,B,p)

if res == 0: print 0

else: print res[0],res[1]

15. Given A,B, p as before, determine the number of points on the elliptic curve, and print the
“trace of Frobenius” tp, as defined on page 309 of the textbook.

Solution.
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For p of the size in the test cases, we can use the following procedure.

• Make a list of all of the squares modulo p, by squaring each possible residue class and
storing them in a set.

• Trying each possible value of x. If x3 + Ax + B is 0, there is one point (x, 0) with this
x. If x3 + Ax + B is a nonzero square, there are two points (x,±y), which if it is a
non-square, there are zero.

• Add one for the point O at infinity.

We can compute the size of the group in this way; subtracting from p + 1 gives the trace of
Frobenius. Here is an implementation.

def count_tf(A,B,p):

sq = set()

for a in range(1,p): sq.add(a*a%p)

pts = 1

for x in range(p):

rhs = (x**3 + A*x + B)%p

if rhs == 0: pts += 1

if rhs in sq: pts += 2

return p+1 - pts

### I/O

A,B,p = map(int,raw_input().split())

print count_tf(A,B,p)

Remark. There are very efficient algorithms for this problem, sufficient for primes of the size
needed for cryptography, but they are beyond the scope of this course. For this problem, p
will be no more than 15 bits in length, and a more naive method will suffice. See the online
problem statement for a further hint.

16. Given parameters p, q, g for DSA and a public key A, find a document D with a valid signature
(S1, S2). Note that you will not be able to decide on D in advance (since DSA is secure, as far
as we know), but instead compute it along with a signature. See exercise 4.7 in the textbook
for a suggestion; you will need to adapt the method in that exercise from ElGamal to DSA.

Solution.

We can attempt to begin as in the ElGamal version, by choosing i and j at random and
setting

S1 = giAj%p%q.

Since the order of g is the second prime q in DSA, was can choose i and j from Z/q.

Now, to decide how to write down S2 and D, we can consider the verification equation that
we wish to satisfy.
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gS
−1
2 DAS−1

2 S1%p%q = S1

It is very hard to work with this equation: the %p%q term rules doing virtually any manip-
ulation of the exponent. However, we know that since S1 = giAj (mod p), it is sufficient to
solve the following (mod p) congruence instead.

gS
−1
2 DAS−1

2 S1 ≡ giAj (mod p)

This congruence can be transformed from a (mod p) congruence into a (mod q) congruence
by expressing both sides as powers of g (and recalling that g has order q).

gS
−1
2 D+aS−1

2 S1 ≡ gi+aj (mod p)

⇔ S−1
2 D + aS−1

2 S1 ≡ i+ aj (mod q)

Now, the essential difficulty in solving this congruence, for Eve, is that she doesn’t know
what a is. So she needs to somehow solve a congruence that includes a completely unknown
quantity. The most foolproof way to do this is to choose the variables in such a way that the
desired congruence is true no matter what a is. There turns out to be a way to do this: make
sure that all of the a terms cancel. This can be arranged by making sure that the following
congruences hold.

S−1
2 S1 ≡ j (mod q) (to force the a terms to cancel

S−1
2 D ≡ i (mod q) (to ensure that the remaining terms match)

Remember that we’ve already chosen i, j, and S1, so we just solve for S2 and D as follows.

S2 ≡ j−1S1 (mod q)

D ≡ iS2 (mod q)

≡ ij−1S1 (mod q)

These choices of D,S1, S2 will indeed satisfy the verification equation, hence form a valid
signed documnet. Note that in the end, this was virtually the same as the solution to problem
1, except that we remove two minus signs and replace (mod p − 1) with (mod q). An
implementation is below.

### Omitted: code for inv_mod(a,m) (modular inversion)

import random

random.seed()
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def forge(p,q,g,A):

i = random.randrange(1,q)

j = random.randrange(1,q)

s1 = pow(g,i,p)*pow(A,j,p) % p % q

s2 = inv_mod(j,q)*s1 % q

d = i * s2 % q

return d,s1,s2

### I/O

p,q,g,A = map(int,raw_input().split())

d,s1,s2 = forge(p,q,g,A)

print d,s1,s2
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