
Problem Set 9 Solutions Math 158, Fall 2015

Written problems

1. Read example 8.10 in the textbook, about a simple blind signature scheme based on RSA.

(a) Assume that the document D to be signed is a unit modulo N (we saw in PSet 8, #6
that this is extremely likely to hold). Prove that the element D′ is uniformly distributed
in Z/N , i.e. that any value is just as probable as any other. This shows that Samantha
cannot possibly learn any information about D from D′.

(b) Suppose that Samantha uses the same public key (N, e) to receive encrypted messages
as she uses for the blind signatures, and that Alice has intercepted a ciphertext C meant
for Samantha. Show that, by requesting a blind signature, Alice can learn the plaintext
corresponding to C. Explain why Samantha has no way to detect that Alice is doing
this.

Remark. This does not necessarily mean that the RSA blind signature scheme should never
be used in practice (as part of a carefully designed protocol), but it does mean that Samantha
should not use the same public key for both encryption and blind signing.

Solution.

(a) Let a be any element of Z/N . We must show that Pr(D′ ≡ a (mod N)) = 1
N . Since

this probability does not depend on D′, this will show that the value of D′ is uniformly
distributed. Observe that D′ ≡ a if and only if ReD ≡ a, which is true if and only if
Re ≡ D−1a (mod N) (this is where we must assume that D is a unit).

At this stage, we must use the fact that e is part of an RSA public key. In particular, this
means that there is a decrypting exponent d, with the property that xe ≡ y (mod N)
if and only if x ≡ yd (mod N) (that is, exponentiating by e and exponentiating by d

are inverse functions). Therefore Re ≡ D−1a (mod N) if and only if R ≡
(
D−1a

)d
(mod N). Since R is chosen uniformly at random, the probability that it is exactly(
D−1a

)d
is 1

N . Thus 1
N is also equal to the probability that D′ ≡ a (mod N), as

desired.

(b) An RSA signature on C is the same thing as the decryption of C: they are both Cd

(mod N). Therefore Alice can send Samantha ReC for a blind signature, and obtain
the plaintext Cd (mod N) by the process in the book. Samantha cannot detect this
because, by part (a), the number she received from Alice is just a uniformly distributed
random number from 0 to N − 1; she cannot obtain any information about at all about
what Alice is having her sign.

2. Let P be a point of order N on an elliptic curve over a finite field. Prove that, if m,n are
any two integers, the two points m · P and n · P are equal if and only if m ≡ n (mod N).

Solution.

Suppose that mP = nP . Assume without loss of generality that m ≥ n. Then adding the
inverse of P n times shows that (m − n) · P = O. We know that N · P = O, therefore

due Friday 4 December. page 1 of 12

Problem Set 9 Solutions Math 158, Fall 2015

[(m− n)%N] · P = O (since we have merely added a multiple of N · P , the identity, to both
sides). The remainder (m − n)%N is strictly less than N . By definition of order, N is the
smallest postive integer giving O when multiplied by P ; it follows that (m − n)%N cannot
be positive; it must be 0. Therefore m ≡ n (mod N).

Conversely, if m ≡ n (mod N), then mP and nP differ by addition of N ·P some number of
times. Since N · P is the identity, this means that m · P = n · P .

3. (a) Consider the elliptic curve Y 2 = X3 + 7. Using your code (or the solution, or someone
else’s code) for computing the trace of Frobenius (PSet 8, # 15), compute the number
tp/
√
p (as a floating-point number) for this curve, for each prime p between 1000 and

2000, and store the results in a list. Draw a histogram of the resulting numbers (you
may choose the number of bins as you see fit), and describe briefly the distibution of
these values.

(b) Do the same thing, but now for the curve Y 2 = X4 + 7 (you will need to modify the
trace of Frobenius code slightly since this doesn’t have the form Y 2 = X3 +AX +B).

(c) Do the same thing, but now for the curve Y 2 = X5 + 7. What is the main difference
you notice between this distribution and the distributions you saw in parts (a) and (b)?

Remark. The curve in part (b) is also an elliptic curve, although it’s equation hasn’t been
expressed in our usual form. The curve in part (c) is not; it is an example of a hyperelliptic
curve; some basics about these curves are discussed in section 8.10.

Solution.

Three histograms for tp/
√
p are shown below; each breaks the data into 10 buckets.

due Friday 4 December. page 2 of 12

Problem Set 9 Solutions Math 158, Fall 2015

In all three cases, there is a large spike at tp = 0 (which appears just off-center in these
pictures since 0 is included in the bucket beginning at 0, not the bucket ending at 0), and a
distribution that spreads over an interval, slightly flaring up at the ends.

The main qualitative shift between parts (a),(b) and (c) is the width of the distribution: in
parts (a) and (b) the distribution ends abruptly at ±2, while in part (c) it ends abruptly at
±4.

In general, if we do a similar point count for any curve defined by a polynomial in two
variables, we will find a distibution abruptly ending at ±2g, where g is an integer called the
genus of the curve. Elliptic curves (e.g. in part (a), and also, it turns out, in (b)) have genus
1. In contrast, a straight line has genus 0, which explains why a straight line always has
exactly p + 1 points on it (mod p) (counting the point at infinity). The genus is related
in a fascinating way to the topology of the curve when viewed as a set of pairs of complex
numbers.

4. Textbook exercise 6.14.

Solution.

(a) Bob should send nB ·P to Alice. Using a program to compute elliptic curve arithmetic,
this value is 1943 · (1980, 431) = (1432, 667).

(b) The shared secret is nB ·QA = 1943 · (2110, 543) = (2424, 911).

(c) When p is only 2671, it is trivial to find nA with a computer: trial and error is fast
enough. For example, using the elliptic curve arithmetic code displayed before the
coding problem solutions, I can find it as follows. Note that I’ve chosen to run the for

loop up to 3000 since this is definitely larger than p+ 2
√
p, hence definitely larger than

the order of the point P .

>>> C = curve(171,853,2671)

>>> P = ec_pt(C,(1980,431))

>>> QA = ec_pt(C,(2110,543))

>>> for i in range(3000):

... if (i*P).coords == QA.coords: print i

...

726

2045

>>>

In fact, we found two “logarithms:” 726 and 2045. This shows that the order of P must
be 2045 − 726 = 1319. In any case, we can conclude that nA = 726 (or is congruent to
it modulo the order of P , which is good enough).

(d) Bob computes nB · P = 875 · (1980, 431) = (161, 2040) and sends Alice only the x-
coordinate 161.

Bob can infer that a possible y-coordinate of Alice’s point QA is a square root of 23 +
171 · 2 + 853 ≡ 1203 (mod p). Since p ≡ 3 (mod 4), we can apply proposition 2.26 to
quickly find a square root, as yA ≡ 1203(p+1)/4 ≡ 12032672/4 ≡ 2575 (mod p). So Alice’s
point is (2,±2575), but Bob cannot say which for sure.

due Friday 4 December. page 3 of 12

Problem Set 9 Solutions Math 158, Fall 2015

To obtain the shared value, Bob can compute nB · (2, 2575) = (1708, 1419) and extract
the x-coordinate 1708, which is the shared secret. If we had used (2,−2575) instead,
he would have obtained the inverse point (since nB(QA) = 	nB ·QA), which has the
same x-coordinate. So the shared secret is definitiely 1708.

5. Textbook exercise 6.16.

Solution.

(a) If (x, y) is one point on an elliptic curve, then the only other point with the same x-
coordinate is (x,−y), since any square has only two square roots modulo p (or one square
root of the square is 0). Assuming that x3R +AxR +B 6≡ 0 (mod p) (in which case, there
is no ambiguity about yR), the two possible points are (xR, yR) and (xR, p − yR). One
of the numbers yR, p− yR is less than 1

2p and one is greater than or equal to it (we are
assuming p 6= 2 implicitly here), so βR uniquely specifies which one is which.

(b) Bob can compute that x3R +Axr +B ≡ 216 (mod p), and then obtain a square root by
computing 216(p+1)/4 ≡ 487 (mod p) (by proposition 2.26). This is less than 1

2p, and
βR = 0, so Alice concludes that (278, 487) is the point that Bob has in mind.

If Alice had instead said βR = 1, then Bob would know that her point is (278, 636), since
636 ≡ −487 (mod p).

6. Textbook exercise 6.17.

(a) The point T is nA ·R, and in turn it is (nAk) · P = k · (nA · P) = k ·QA = S. Therefore
xT = xS and yT = yS . Therefore c1 ≡ xTm1 and c2 ≡ yTm2 (mod p). Multiplying by
x−1T and yT−1 (mod p) this shows that m′1 ≡ m1 and m′2 ≡ m2 (mod p).

(b) The plaintext is two integers modulo p, and the ciphertext is one point on the elliptic
curve plus two integers modulo p. Since the elliptic curve point has two coordinates, both
integers modulo p, the ciphertext amounts to four integers modulo p. So the message
expansion is two-to-one.

Of course, Alice and Bob could agree to use the technique from the previous problem to
compress the size of the point R be about half. So if this modification is performed, the
message expansion becomes only three-to-two, or 1.5-to-one.

(c) Alice’s public key is 595 · (278, 285) = (1104, 492). To decrypt ((1147, 640), 289, 1189),
Alice computes T = nA ·R = 595 · (1147, 640) = (942, 476), and then finds the plaintext
as

m1 ≡ 942−1279 (mod 1201)

≡ 509

m2 ≡ 476−11189 (mod 1201)

≡ 767

So the plaintext is (509, 767).

due Friday 4 December. page 4 of 12

Problem Set 9 Solutions Math 158, Fall 2015

7. Textbook exercise 6.18. Revision: in part (b), a short list of possible values is an acceptable
answer. In practice this is just as good as getting the plaintext on the nose, since Eve can
examine each possibility and see which one has the right format (e.g. is in English).

Solution.

(a) Since (xS , yS) is a point on the elliptic curve, it follows that

(m−12 c2)
2 ≡ (m−11 c1)

3 +A(m−11 c1) +B (mod p).

Both c1 and c2 are known. As long as one of m1,m2 is known (e.g. because it is a
common header to all messages that Bob sends to Alice), then the congruence above is a
polynomial congruence for the other (technically, for its inverse, but finding the inverse
is good enough since inversion modulo p is efficient).

(b) In this case, xS ≡ m−11 c1 ≡ 1050−1814 ≡ 957 (mod p). Therefore:

(m−12 1050)2 ≡ 9573 + 19 ∗ 957 + 17 ≡ 697 (mod p).

We could turn this into an equation for m2 as follows.

697 ≡ m−22 10502 (mod p)

m2
2 ≡ 10502697−1 (mod p)

≡ 815.

There are efficient ways to compute square roots modulo p (even in cases where p 6≡ 3 (mod 4),
so that proposition 2.26 does not apply), which Eve would use in practice. For the purposes
of this assignment, we can just find the square root by trial and error:

m2 ≡ 179, 1022 (mod p).

So the second part of the plaintext is either 179 or 1022. It is not possible to determine for
sure which of these two it is using the information given. In practice, Eve could examine
them both to see which matches the expected format for a secret message (e.g. written in
English), and keep the one that looks real.

8. Suppose that Samantha has published an ECDSA verification key as described on page 322
of the textbook. Suppose that d, d′ are two different documents (i.e. d 6≡ d′ (mod q)), and
that Samantha signs both of them using the same random element e, resulting in signatures
(s1, s2) and (s′1, s

′
2). Prove that Eve can efficiently extract Alice’s secret signing key s from

these two signed documents.

Solution.

We know from the first signing equiation that s1 = s′1 (since the same value of e was used).
We know from the second signing equation that the following two modulo-q congruences hold.

due Friday 4 December. page 5 of 12

Problem Set 9 Solutions Math 158, Fall 2015

e · s2 − s · s1 ≡ d (mod q)

e · s′2 − s · s1 ≡ d′ (mod q)

Eve knows every term in these congruences, except e and s. The congruences form a linear
system, which she can solve by any of the conventional methods. For example, she could
write this as a congruence of matrices(

s2 −s1
s′2 −s1

)(
e
s

)
=

(
d
d′

)
and observe that the determinant of this matrix is s1(s

′
2− s2) (mod q). Therefore the matrix

is invertible (mod q) if and only if s1 6≡ 0 (mod q) and s2 6≡ s′2 (mod q). The first condition
is essentially certain since s1 behaves like a random number, and the second condition follows
from the assumption that d 6≡ d′ (mod q). Therefore both e and s can now be recoevered by
Eve by inverting this matrix (mod q) and multiplying by the vector on the right.

Programming problems

Note. Problems 9 and 11 below will make use of public parameters specified in this document.

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

You certainly do not need to read and understand the whole document, just find the informa-
tion you need for the algorithms. You’ll need to look up how to convert hexadecimal strings
to integers.

Note for the following solutions.

In the following solution, I will make use of the following code for elliptic curve arithmetic. It
uses a bit of Python’s object-oriented capabilities. I’ve avoided doing this until now to keep
the syntax to a minimum, but I think it was be interesting to you to see how to do this sort
of thing.

Class for an elliptic curve over a finite field (in Weierstrass form).

class curve:

def __init__(self,A,B,p):

self.A = A

self.B = B

self.p = p

def add(self,P,Q):

if P==0: return Q

if Q==0: return P

if P==Q:

x = P[0]

y = P[1]

rise = (3*x*x + self.A) % self.p

due Friday 4 December. page 6 of 12

Problem Set 9 Solutions Math 158, Fall 2015

run = (2*y) % self.p

else:

rise = (P[1]-Q[1])%self.p

run = (P[0]-Q[0])%self.p

if run == 0:

return 0

m = (rise*inv_mod(run,self.p))%self.p

b = (P[1] - P[0]*m)%self.p

x = (m*m - P[0]-Q[0])%self.p

y = (-(m*x+b))%self.p

return (x,y)

def inv(self,P):

if P == 0: return 0

return (P[0],(-P[1])%self.p)

def mult(self,P,n):

if n<0:

P = self.inv(P)

n = -n

res = 0

while n > 0:

if n%2 == 1:

res = self.add(res,P)

n /= 2

P = self.add(P,P)

return res

Check if the curve contains a given point

def contains(self,P):

if P==0: return True

lhs = P[1]**2

rhs = P[0]**3 + self.A * P[0] + self.B

return (lhs-rhs)%self.p == 0

Class for a point on an elliptic curve.

class ec_pt:

def __init__(self,C,coords):

assert C.contains(coords)

self.C = C

self.coords = coords

def __add__(self,Q):

assert self.C.contains(Q.coords)

if Q==0: return self

return ec_pt(self.C, self.C.add(self.coords,Q.coords))

def __radd__(self,Q):

assert self.C.contains(Q.coords)

due Friday 4 December. page 7 of 12

Problem Set 9 Solutions Math 158, Fall 2015

if Q==0: return self

else: return self+Q

def __sub__(self,Q):

assert self.C.contains(Q.coords)

return self + (-Q)

def __rmul__(self,n):

return ec_pt(self.C, self.C.mult(self.coords,n))

def __neg__(self):

return ec_pt(self.C, self.C.inv(self.coords))

def __str__(self):

return str(self.coords)

Inverses modulo m.

def inv_mod(a,m):

pre = (a,1)

cur = (m,0)

while cur[0] != 0:

k = pre[0] / cur[0]

nex = (pre[0]-k*cur[0],pre[1]-k*cur[1])

pre = cur

cur = nex

return pre[1]%m

The main advantage of defining these classes is that I’ve overloaded the operators +,- and *.
This makes it possible to do elliptic curve computations more succinctly and intuitively. For
example:

>>> from ec_utils import *

>>> C = curve(171,853,2671)

>>> P = ec_pt(C,(1980,431))

>>> print P+P

(1950, 1697)

>>> print P-P

0

>>> print 123456*P

(2148, 1151)

>>> print -P

(1980, 2240)

>>>

Of course, this isn’t necessary to solve the problems. In the solutions below, you can just
replace all the uses of +,-,* with calls to the appropriate elliptic curve arithmetic functions,
supplying the coefficients A,B as arguments.

9. Write a program that determines whether a given ECDSA signature (s1, s2) for a document
d is valid or not, given paramters and an ECDSA public key (notation as on page 322 of the

due Friday 4 December. page 8 of 12

Problem Set 9 Solutions Math 158, Fall 2015

textbook). The signatures will all use curve P-384 from the document above.

Solution.

We do the computation as outlined in the textbook’s table. Here is one implementation (using
the curve and ec pt classes written above).

Note that I have chosen to enter the P-384 parameters by pasting the hexadecimal represen-
tation into the code, and using some Python operations to remove the spaces and convert to
an integer.

Omitted: code of curve, ec_pt, and inv_mod (see above).

ECDSA verification

Arguments:

G is the point from the public parameters (an ec_pt)

p is the modulus

q is the order of G

V is the verification key (an ec_pt on the same curve as G)

(s1,s2) is the purported signature

d is the document

def valid(C,p,q,G,V,(s1,s2),d):

s2i = inv_mod(s2,q)

v1 = s2i*d % q

v2 = s2i*s1 % q

return (v1*G + v2*V).coords[0] % q == s1

Set up the curve and point for P-384; also gives p and q as return values

def p384():

p = 3940200619639447921227904010014361380507973927046544666794829

3404245721771496870329047266088258938001861606973112319

q = 3940200619639447921227904010014361380507973927046544666794690

5279627659399113263569398956308152294913554433653942643

Bs = ’b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112 0314088f

5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef’.replace(’ ’,’’)

b = int(Bs,16)

Gxs = ’aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7’.replace(’ ’,’’)

Gx = int(Gxs,16)

Gys = ’3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f’.replace(’ ’,’’)

Gy = int(Gys,16)

C = curve(-3,b,p)

G = ec_pt(C,(Gx,Gy))

return C,p,q,G

I/O

due Friday 4 December. page 9 of 12

Problem Set 9 Solutions Math 158, Fall 2015

xv,yv = map(int,raw_input().split())

d,s1,s2 = map(int,raw_input().split())

C,p,q,G = p384()

V = ec_pt(C,(xv,yv))

if valid(C,p,q,G,V,(s1,s2),d): print ’valid’

else: print ’invalid’

10. Suppose that Alice and Bob have performed elliptic curve Diffie-Hellman key exchange (as
described as on page 317 of the textbook), but they have chosen the prime p to be only 24
bits in length. Write a program that is given the public parameters and the exchanged points
QA and QB, and determines the shared secret.

Revision: I have dropped the length of the prime from 32 bits to 24 bits, to allow a broader
range of algorithms to work.

Solution.

We an implement the babystep-giantstep algorithm in almost example the same way as we
did for the classical discrete logarithm problem. This can be used to extract either Alice’s
or Bob’s secret exponent from their transmitted value, from which the shared secret can be
computed.

The only issue is that we no longer have access to the order of the group directly. However,
we know for certain (by Hasse’s theorem) that this order is at most p+ 1 + 2

√
p. So we can

use this as our N , and take the giantstep size to be
√
N , rounded up.

Omitted: code for curve, ec_pt, and inv_mod (see above).

import math

def ec_bsgs(P,Q):

p = P.C.p # Get the prime modulus from P’s curve

Maximum possible order of the curve, by Hasse’s theorem:

N = p+int(2*math.sqrt(p))+1

B = int(math.sqrt(N))+1 # Size of giant-step

dpn = dict()

R = 0*P

for i in range(B):

dpn[R.coords] = i

R += P

S = Q

PP = B*P # Giant stepsize

for j in range(B):

if S.coords in dpn: return dpn[S.coords]+B*j

S -= PP

def dha(P,QA,QB):

na = ec_bsgs(P,QA)

return na*QB

due Friday 4 December. page 10 of 12

Problem Set 9 Solutions Math 158, Fall 2015

I/O

A,B,p = map(int,raw_input().split())

px,py = map(int,raw_input().split())

qax,qay = map(int,raw_input().split())

qbx,qby = map(int,raw_input().split())

C = curve(A,B,p)

P = ec_pt(C,(px,py))

QA = ec_pt(C,(qax,qay))

QB = ec_pt(C,(qbx,qby))

S = dha(P,QA,QB)

print S.coords[0],S.coords[1]

11. Write a program to decipher messages enciphered with the Menezes-Vanstone cryptosystem
described in problems 6 and 7 (textbook exercises 6.17 and 6.18), given a private key and a
ciphertext. The public parameters will be those of curve P-192 from the above document.

Solution.

The following code essentially follows the notation and procedure form the book’s table.

Omitted: code for curve, ec_pt, and inv_mod (see above)

Returns C,p,q,G for the curve P-192.

def p192():

p = 6277101735386680763835789423207666416083908700390324961279

q = 6277101735386680763835789423176059013767194773182842284081

bs = ’64210519 e59c80e7 0fa7e9ab 72243049 feb8deec

c146b9b1’.replace(’ ’,’’)

Gxs = ’188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd

82ff1012’.replace(’ ’,’’)

Gys = ’07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1

1e794811’.replace(’ ’,’’)

b = int(bs,16)

Gx = int(Gxs,16)

Gy = int(Gys,16)

C = curve(-3,b,p)

G = ec_pt(C,(Gx,Gy))

return C,p,q,G

Notation as in the textbook’s table

def mv_decipher(p,P,nA,R,c1,c2):

T = nA * R

due Friday 4 December. page 11 of 12

Problem Set 9 Solutions Math 158, Fall 2015

xt,yt = T.coords

return (inv_mod(xt,p)*c1 % p, inv_mod(yt,p)*c2 % p)

I/O

na = int(raw_input())

xr,yr = map(int,raw_input().split())

c1,c2 = map(int,raw_input().split())

C,p,q,P = p192()

R = ec_pt(C,(xr,yr))

m1,m2 = mv_decipher(p,P,na,R,c1,c2)

print m1,m2

12. (Extra credit) Write a program to factor RSA moduli (i.e. products of two prime numbers)
at least 63 bits in length. The test cases for this problem range in length from 63 bits to 128
bits, and your score is based on how many your program is able to solve, as usual.

Solving half the test cases will be worth as many points as one ordinary programming problem,
and should be possible using Lenstra’s algorithm (from section 6.6). The remaining cases leave
you plenty of room to try to improve the algorithm’s performance, or to try any other ideas
you may come up with.

Solution.

There are many factoring algorithms, and many ways to try to optimize each one. See the
submitted solutions online for some examples (I’ve made them invisible for now, since you
are still allowed to continue to try this challenge until the end of the week).

due Friday 4 December. page 12 of 12

