The first five problems cover material discussed before the midterm. The remaining three problems concern material to be discussed on Wednesday 10/15.

1. For each of the following differential equations, determine the characteristic equation. You do not need to solve the characteristic equation.
(a) $f^{\prime}(x)-27 f(x)=0$
(c) $f^{(7)}(x)+f^{\prime}(x)=0$
(b) $f^{\prime \prime \prime}(x)+f^{\prime \prime}(x)+f(x)=0$
(d) $f^{\prime \prime}(x)-4 f^{\prime}(x)+16 f(x)=0$
2. Find a nonzero real solution to each of the following (linear, homogeneous) differential equations.
(a) $f^{\prime \prime}(x)+8 f^{\prime}(x)+7 f(x)=0$
(c) $f^{\prime \prime}(x)+8 f^{\prime}(x)+20 f(x)=0$
(b) $f^{\prime \prime}(x)+8 f^{\prime}(x)+16 f(x)=0$
(d) $f^{\prime \prime}(x)+8 f^{\prime}(x)+116 f(x)=0$
3. Find a nonzero real solution to the differential equation $f^{\prime \prime \prime}(x)=-f(x)$ that is not a constant multiple of e^{-x}.
4. Consider the function $f(x)=e^{-7 x} \cos (2 x)$. Find a second order linear homogeneous differential equation that is satisfied by $f(x)$.
5. Consider the differential equation $y^{\prime \prime}(t)+d y^{\prime}(t)+k y(t)=0$. We mentioned in class that this equation describes the motion of a damped spring. A damped spring is called overdamped if the characteristic equation of this differential equation has only real solutions.
(a) Suppose that $k=16$. How large must the constant d be in order for the spring to be over damped?
(b) Suppose that $d=6$. For which values of k will the spring be overdamped?
6. Find the general solution of each of the following first order differential equations. Note that not all of these are linear and homogeneous.
(a) $f^{\prime}(x)+5 f(x)=0$
(c) $f^{\prime}(x)=3 f(x)$
(b) $f^{\prime}(x)=5 \sin x$
(d) $f^{\prime}(x)=3 x^{2}$
7. Find the general solution to each of the four differential equations in problem 2.
8. For each of the four differential equations in problem 2, find the unique solution $f(x)$ that satisfies the following initial conditions.

$$
\begin{aligned}
& f(0)=0 \\
& f^{\prime}(0)=6
\end{aligned}
$$

