Problem Set 11 (not to turn in) Math 220, Spring 2020

Note: These problems are meant for you to practice with the last week of material, but you are
NOT required to write up solutions or turn anything in. I will post instead solutions on the website

so that you can check your work.
Suggested reading for this week (from the textbook): §8.3, §8.4

Problems from the book: (First two numbers refer to the section number)

e 8.3.2 <lim 2"_3>

n—oo 4 — Hn

Solution: Observe that we can rewrite the “absolute error” as follows.

2n —3 2 520 —3) +2(4 — 5n)
4—5n_<_5>‘ - (4—5n)-5
~ |10n—15+8 —10n
B 20 — 25n
B 7
- 25n—20’

Let € be any positive number. Then we may define IV to be any integer greater than
% (g + 20) (e.g. round this expression up to an integer and add one). It follow that for

all n > N, we have 25m — 20 > g, and therefore ‘L‘ < . This shows that for all

25m—20

e € (0,00), there exists N such that for all n > N we have
2n —3 2

means to say that lim =——.
n—oo 4 — Hn 5

. 1—n?

4—5n

2n—3 _ (_%)‘ < ¢g; this is what it

Solution: (In order to show a different way to organize the work, I present this in a different
order than the previous problem. Note that you’d almost certainly want to do some scratch-
work where you “work backwards” in order to write this proof “forwards.”)

Let £ be any positive number. Let N = [2—\1/5] (that is, round 2—\1@ up to an integer). Now
observe that for all n > N,

3
3n? > =
o= 4e
3
=3 +1 > —
4e
= 4/3 < €
3n2 +1
4/3
€
3n? +1
Finally, observe that 31n_2’fl + % = 3:27/11, so the above inequality is equivalent to

1—n? 1 _
- —3 E.
3n2+1 3
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— 1
This shows that lim - ——, as desired.
n—oo 3n? + 1 3

e 8.3.6 (convergent sequences of integers are eventually constant)

Solution: Let (z,)7%; be a convergent sequence of integers, and suppose that lim z, = L.
n—oo

Let ¢ = % in the definition of “limit;” it follows that there exists a positive integer N such
that for all n > N we have |z, — L| < % From this and the triangle inequality, it follows that
for all n # N, we have

1 1
|zn, — 2n|=[(zn — L) — (2ny — L)| < |20 — L| + |2y — L| < §—|—§:1.
Now, |z, — zn| < 1 implies that z, = zy, since any two distinct integers must differ by at
least 1. Therefore this demonstrates that for this value of N, we have a,, = ay for alln > N,
as desired.

e 9.3.12(a) (shifting a sequence does not change the limit)

Solution: First, suppose that lim a, = L. Let € be any real number. By definition of “limit,”
n—o0

there exists a natural number N such that for all n > N, we have |a,, — L| < . For this same
value of N, it follows that for all n > N, we have n+ 100 > N and thus |a,+100 — L| < €, i.e.

|b, — L| < e. Therefore we also have lim b, = L.
n—oo

Conversely, suppose that (b,)72, converges to L. Let € be any positive real number. Then
there exists a natural number Ny such that for all n > Ny, |b, — L| < e. Let N = Ny + 100.
Then it follows that for all n > N, we have n — 100 > N, and hence |b,_100 — L| < ¢, i.e.
|a, — L| < e. This shows that for all € > 0, there exists N such that for all n > N we have

|an, — L| < e. Therefore we also have lim,_,~ca, = L, as desired.

Supplemental problems:

1. Suppose that (a,)52; is a convergent sequence of positive real numbers, with limit L. Prove
that (/@)% ; is also convergent, and has limit v/L. Solution:

We can do a bit of algebra on the expression for the error, using the “rationalize the denom-
inator” algebraic trick from calculus:

an — VL \Ja,+VL
e =

an — L
Van + VL

Since y/a, is positive, we could bound this error as follows:

an —L| |ay, — L]
VL NI

(This is a somewhat weak bound, but it won’t matter for purposes of this proof.)

’\/@—ﬁ‘<
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Now we’re in a good positive to choose our “threshold” N. Let € be any positive real number.
Since h_)m an = L, there exists a natural number N such that for all n > N, we have
n—oo

la, — L| < VL -e.

It follows from this that for all n > N,

an — VL e
‘\/@—ﬁ)<| \EL’< 55 =

So indeed it follows that li_}m Van = \/E, as desired.

2. Prove the “decreasing” version of the monotone convergence theorem: if (a,)5 ; is a decreas-

ing sequence of real numbers, then (a,)° ; converges if and only if it is bounded below.
There are at least two ways to go about this.

Solution 1 (prove using the “increasing” version):

Consider the sequence (—ay)22 ;. This is a an increasing sequence, since for all n € N,

ant+1 < an implies that —an+1 > —ay,. By the “increasing” version of the monotone con-
vergence theorem, (—ay)0, converges. By one of the limit laws proved in class (the one
concerning multiplying a sequence by a scalar), the sequence ((—1)-(—ay)),-; also con-
verges, i.e. (a,)52; converges, as desired.

Solution 2 (mimicing the proof of the increasing version):

First, we prove that the completeness axiom for R also imples that any set of real numbers that
is bounded below must have a greatest lower bound. This can be proved from the completness
axiom: if S is bounded below, with lower bound B, then "= {—z : x € S} is bounded above
by —B since —x < —B for all x € S. Hence by the completeness axiom, 1" has a least upper
bound L. It follows that for all x € S, —x < L, hence x > —L; so —L is a lower bound for
S. Also, if L’ is any real number less than L, then L’ is not an upper bound for T, i.e. there
exists € S such that —z > L’. It follows that —L’ is not a lower bound for S. This shows
that any real number greater than —L is not a lower bound for S, so —L is indeed a greatest
lower bound.

Now, we use the existence of greatest lower bounds to prove the desired result. Let G denote
the greatest lower bound of the set {a,, : n € N}. This number exists since we have assumed
that the sequence is bounded below.

For all positive real numbers e, G + ¢ is not a lower bound for the sequence (since G is the
greatest lower bound), so there exists N € N such that ay < G + €. Since the sequence is
decreasing, it follows that for alln > N, a, < ay < G+¢. In other words, a, — G < €. Since
G is a lower bound for a,,, we have a,, — G > 0, so |a, — G| = a, — G < e. This demonstrates
that the sequence (a,)32; converges to G, its greatest lower bound.

3. (The comparison test for infinite series) Suppose that (a,)>2; and (by,)o2; are two sequences
of positive real numbers, such that a,, < b, for all n € N. Prove that if the series Zzo:l b,
converges, then the series > >, a, also converges. (Hint: use the monotone convergence
theorem.)

Solution:
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Let s, = Y p_qan and let t, = > ) by. So (5,)52, and (£,)02, are the sequences of partial
sums for the sequences (ay)22, and ()7, respectively.

Since a,, is positive for all n, it follows that s,+1 = sp + an+1 > s, for all n € N, and thus
the sequence (s,,)22 is an increasing sequence. The same reasoning shows that (¢,)0%, is an
increasing sequence. So we can apply the monotone convergence theorem to both sequences.

We are assuming that the series > 2 | b, converges. In other words, the sequence (£,)5
converges. By the monotone convergence theorem, it is bounded above (in fact, it is bounded

above by its limit). Let B be an upper bound. Then ¢,, < B for all n € N.

Since a,, < by, for all n, it follows that s, < ¢, for all n (I will omit the formal proof of this
for brevity, but try to write it out! It is a nice exercise in induction). Therefore s, < t, < B
for all n € N, and thus B is an upper bound for the sequence (s,)5°; as well. So (sy,)02 is
an increasing sequence that is bounded above; by the monotone convergence theorem it also

converges. By definition this means that the series >~ | a,, converges, as desired.
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