
Problem Set 11 (not to turn in) Math 220, Spring 2020

Note: These problems are meant for you to practice with the last week of material, but you are
NOT required to write up solutions or turn anything in. I will post instead solutions on the website
so that you can check your work.

Suggested reading for this week (from the textbook): §8.3, §8.4

Problems from the book: (First two numbers refer to the section number)

• 8.3.2

(
lim
n→∞

2n− 3

4− 5n

)
Solution: Observe that we can rewrite the “absolute error” as follows.∣∣∣∣2n− 3

4− 5n
−
(
−2

5

)∣∣∣∣ =

∣∣∣∣5(2n− 3) + 2(4− 5n)

(4− 5n) · 5

∣∣∣∣
=

∣∣∣∣10n− 15 + 8− 10n

20− 25n

∣∣∣∣
=

∣∣∣∣ 7

25n− 20

∣∣∣∣
Let ε be any positive number. Then we may define N to be any integer greater than
1
25

(
7
ε + 20

)
(e.g. round this expression up to an integer and add one). It follow that for

all n ≥ N , we have 25n − 20 > 7
ε , and therefore

∣∣∣ 7
25n−20

∣∣∣ < ε. This shows that for all

ε ∈ (0,∞), there exists N such that for all n ≥ N we have
∣∣∣2n−34−5n −

(
−2

5

)∣∣∣ < ε; this is what it

means to say that lim
n→∞

2n− 3

4− 5n
= −2

5
.

• 8.3.3

(
lim
n→∞

1− n2

3n2 + 1

)
Solution: (In order to show a different way to organize the work, I present this in a different
order than the previous problem. Note that you’d almost certainly want to do some scratch-
work where you “work backwards” in order to write this proof “forwards.”)

Let ε be any positive number. Let N = d 1
2
√
ε
e (that is, round 1

2
√
ε

up to an integer). Now

observe that for all n ≥ N ,

3n2 ≥ 3

4ε

⇒ 3n2 + 1 >
3

4ε

⇒ 4/3

3n2 + 1
< ε

⇒
∣∣∣∣ 4/3

3n2 + 1

∣∣∣∣ < ε

Finally, observe that 1−n2

3n2+1
+ 1

3 = 4/3
3n2+1

, so the above inequality is equivalent to∣∣∣∣ 1− n2

3n2 + 1
−
(
−1

3

)∣∣∣∣ < ε.
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This shows that lim
n→∞

1− n2

3n2 + 1
= −1

3
, as desired.

• 8.3.6 (convergent sequences of integers are eventually constant)

Solution: Let (zn)∞n=1 be a convergent sequence of integers, and suppose that lim
n→∞

zn = L.

Let ε = 1
2 in the definition of “limit;” it follows that there exists a positive integer N such

that for all n ≥ N we have |zn−L| < 1
2 . From this and the triangle inequality, it follows that

for all n 6= N , we have

|zn − zN | = |(zn − L)− (zN − L)| ≤ |zn − L|+ |zN − L| < 1

2
+

1

2
= 1.

Now, |zn − zN | < 1 implies that zn = zN , since any two distinct integers must differ by at
least 1. Therefore this demonstrates that for this value of N , we have an = aN for all n ≥ N ,
as desired.

• 9.3.12(a) (shifting a sequence does not change the limit)

Solution: First, suppose that lim
n→∞

an = L. Let ε be any real number. By definition of “limit,”

there exists a natural number N such that for all n ≥ N , we have |an−L| < ε. For this same
value of N , it follows that for all n ≥ N , we have n+ 100 ≥ N and thus |an+100−L| < ε, i.e.
|bn − L| < ε. Therefore we also have lim

n→∞
bn = L.

Conversely, suppose that (bn)∞n=1 converges to L. Let ε be any positive real number. Then
there exists a natural number N0 such that for all n ≥ N0, |bn − L| < ε. Let N = N0 + 100.
Then it follows that for all n ≥ N , we have n − 100 ≥ N , and hence |bn−100 − L| < ε, i.e.
|an − L| < ε. This shows that for all ε > 0, there exists N such that for all n ≥ N we have
|an − L| < ε. Therefore we also have limn→∞an = L, as desired.

Supplemental problems:

1. Suppose that (an)∞n=1 is a convergent sequence of positive real numbers, with limit L. Prove
that (

√
an)∞n=1 is also convergent, and has limit

√
L. Solution:

We can do a bit of algebra on the expression for the error, using the “rationalize the denom-
inator” algebraic trick from calculus:

∣∣∣√an −√L∣∣∣ =

∣∣∣∣∣
√
an −

√
L

1
·
√
an +

√
L

√
an +

√
L

∣∣∣∣∣
=

∣∣∣∣∣ an − L
√
an +

√
L

∣∣∣∣∣
Since

√
an is positive, we could bound this error as follows:

∣∣∣√an −√L∣∣∣ < ∣∣∣∣an − L√
L

∣∣∣∣ =
|an − L|√

L
.

(This is a somewhat weak bound, but it won’t matter for purposes of this proof.)
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Now we’re in a good positive to choose our “threshold” N . Let ε be any positive real number.
Since lim

n→∞
an = L, there exists a natural number N such that for all n ≥ N , we have

|an − L| <
√
L · ε.

It follows from this that for all n ≥ N ,∣∣∣√an −√L∣∣∣ < |an − L|√
L

<

√
L · ε√
L

= ε.

So indeed it follows that lim
n→∞

√
an =

√
L, as desired.

2. Prove the “decreasing” version of the monotone convergence theorem: if (an)∞n=1 is a decreas-
ing sequence of real numbers, then (an)∞n=1 converges if and only if it is bounded below.

There are at least two ways to go about this.

Solution 1 (prove using the “increasing” version):

Consider the sequence (−an)∞n=1. This is a an increasing sequence, since for all n ∈ N,
an+1 ≤ an implies that −an+1 ≥ −an. By the “increasing” version of the monotone con-
vergence theorem, (−an)∞n=1 converges. By one of the limit laws proved in class (the one
concerning multiplying a sequence by a scalar), the sequence ((−1) · (−an))∞n=1 also con-
verges, i.e. (an)∞n=1 converges, as desired.

Solution 2 (mimicing the proof of the increasing version):

First, we prove that the completeness axiom for R also imples that any set of real numbers that
is bounded below must have a greatest lower bound. This can be proved from the completness
axiom: if S is bounded below, with lower bound B, then T = {−x : x ∈ S} is bounded above
by −B since −x ≤ −B for all x ∈ S. Hence by the completeness axiom, T has a least upper
bound L. It follows that for all x ∈ S, −x ≤ L, hence x ≥ −L; so −L is a lower bound for
S. Also, if L′ is any real number less than L, then L′ is not an upper bound for T , i.e. there
exists x ∈ S such that −x > L′. It follows that −L′ is not a lower bound for S. This shows
that any real number greater than −L is not a lower bound for S, so −L is indeed a greatest
lower bound.

Now, we use the existence of greatest lower bounds to prove the desired result. Let G denote
the greatest lower bound of the set {an : n ∈ N}. This number exists since we have assumed
that the sequence is bounded below.

For all positive real numbers ε, G + ε is not a lower bound for the sequence (since G is the
greatest lower bound), so there exists N ∈ N such that aN < G + ε. Since the sequence is
decreasing, it follows that for all n ≥ N , an ≤ aN < G+ ε. In other words, an−G < ε. Since
G is a lower bound for an, we have an−G ≥ 0, so |an−G| = an−G < ε. This demonstrates
that the sequence (an)∞n=1 converges to G, its greatest lower bound.

3. (The comparison test for infinite series) Suppose that (an)∞n=1 and (bn)∞n=1 are two sequences
of positive real numbers, such that an ≤ bn for all n ∈ N. Prove that if the series

∑∞
n=1 bn

converges, then the series
∑∞

n=1 an also converges. (Hint: use the monotone convergence
theorem.)

Solution:
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Let sn =
∑n

k=1 an and let tn =
∑n

k=1 bn. So (sn)∞n=1 and (tn)∞n=1 are the sequences of partial
sums for the sequences (an)∞n=1 and (bn)∞n=1, respectively.

Since an is positive for all n, it follows that sn+1 = sn + an+1 > sn for all n ∈ N, and thus
the sequence (sn)∞n=1 is an increasing sequence. The same reasoning shows that (tn)∞n=1 is an
increasing sequence. So we can apply the monotone convergence theorem to both sequences.

We are assuming that the series
∑∞

n=1 bn converges. In other words, the sequence (tn)∞n=1

converges. By the monotone convergence theorem, it is bounded above (in fact, it is bounded
above by its limit). Let B be an upper bound. Then tn ≤ B for all n ∈ N.

Since an ≤ bn for all n, it follows that sn ≤ tn for all n (I will omit the formal proof of this
for brevity, but try to write it out! It is a nice exercise in induction). Therefore sn ≤ tn ≤ B
for all n ∈ N, and thus B is an upper bound for the sequence (sn)∞n=1 as well. So (sn)∞n=1 is
an increasing sequence that is bounded above; by the monotone convergence theorem it also
converges. By definition this means that the series

∑∞
n=1 an converges, as desired.
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