MATH 158 MIDTERM EXAM 2 9 NOVEMBER 2016

- The exam is double-sided. Make sure to read both sides of each page.
- The time limit is 50 minutes.
- No calculators are permitted.
- You are permitted one page of notes, front and back.
- The textbook's summary tables for the systems we have studied are provided on the last sheet. You may detach this sheet for easier reference.
- For any problem asking you to write a program, you may write in a language of your choice or in pseudocode, as long as your answer is sufficiently specific to tell the runtime of the program.

 $This \ page \ intentionally \ left \ blank.$

(1)	Use Shanks's "babystep-giantstep" algorithm to compute $\log_5[13]_{23}$ (that integer x such that $5^x \equiv 13 \pmod{23}$). Clearly label the two lists that you the common element between them. A multiplication table modulo 23 is the back of the exam packet, for convenience.	create and
	More space for work on reverse side.	(6 points)

 $Additional\ space\ for\ problem\ 1.$

(2) Let p=53, q=13, g=10 be parameters for DSA (these satisfy the conditions in table 4.3). Suppose that Samantha has chosen the private signing key a=7. Using k=2 as the ephemeral key, compute a DSA signature for the document D=3. (Note: you do not need to calculate the public key A in order to solve this problem.)

 $Additional\ space\ for\ problem\ 2.$

(3) Integers p and q are both primes, exactly 42 bits in length. The numbers p-1 and q-1 factor into primes as follows.

$$p-1 = 2 \cdot 29 \cdot 353 \cdot 433 \cdot 601 \cdot 821$$

 $q-1 = 2 \cdot 2199023249261$

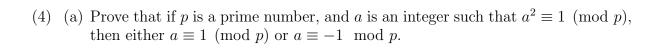
You may assume, without proof, that 2 is a primitive root modulo p and modulo q.

(a) Explain briefly why discrete logarithms modulo p can be computed much more rapidly than discrete logarithms modulo q (be specific about which algorithms are involved; you do not need to describe the algorithms in detail).

(b) Let N = pq. Suppose that Eve attempts to factor N by calling the following function (this is similar to the code provided on Problem Set 7, except that the initial value of a is chosen to be a = 2, rather than chosen at random, and it does not bother to check whether or not a is a unit initially).

```
def pollardWith2(N):
a = 2
j = 2
while fractions.gcd(a-1,N) == 1:
    a = pow(a,j,N)
    j += 1
return fractions.gcd(a-1,N)
```

What will be the return value of this function when called on N = pq? How many times will the while loop iterate before returning this value?



(b) Suppose that p is a prime number, $p-1=2^kq$ for q an odd integer, and a is an integer with $1 \le a \le N-1$. Deduce from part (a) that either $a^q \equiv 1 \pmod{p}$ or one of the numbers a^q , a^{2q} , a^{4q} , \cdots , $a^{2^{k-1}q}$ is congruent to -1 modulo p.

- (5) Suppose that p, g are public parameters for Elgamal signatures (you may assume that g is a primitive root modulo p), and that Samantha's public verification key is A. Samantha publishes a valid signature (S_1, S_2) for a document D, and Eve observes that S_1 is exactly equal to g. This might occur if Samantha is not choosing her ephemeral key sufficiently randomly.
 - (a) Assuming that gcd(g, p 1) = 1, write a function extract(p,g,A,S1,S2,D) that extracts Samantha's private signing key a from this information. You may assume that you have already implemented a function $ext_euclid(a,b)$, which returns a list [u,v,g] such that g=gcd(a,b) and au+bv=g. Your code does not need to check that $S_1=g$, or that gcd(g,p-1)=1; assume that it will only receive input meeting these conditions. Your code should be efficient enough to finish in a matter of seconds if all the arguments are 1024 bits long or shorter.

(b) Describe briefly how you would modify your code to work in the more general situation where $\gcd(g,p-1)$ is relatively small, but may not be equal to 1. You do not need to write a second program; just clearly describe the steps that you would take.

 $Additional\ space\ for\ work.$

 $Additional\ space\ for\ work.$

 $Reference\ information.\ You\ may\ detach\ this\ sheet\ for\ easier\ use.$

Multiplication table modulo 23

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
2	0	2	4	6	8	10	12	14	16	18	20	22	1	3	5	7	9	11	13	15	17	19	21
3	0	3	6	9	12	15	18	21	1	4	7	10	13	16	19	22	2	5	8	11	14	17	20
4	0	4	8	12	16	20	1	5	9	13	17	21	2	6	10	14	18	22	3	7	11	15	19
5	0	5	10	15	20	2	7	12	17	22	4	9	14	19	1	6	11	16	21	3	8	13	18
6	0	6	12	18	1	7	13	19	2	8	14	20	3	9	15	21	4	10	16	22	5	11	17
7	0	7	14	21	5	12	19	3	10	17	1	8	15	22	6	13	20	4	11	18	2	9	16
8	0	8	16	1	9	17	2	10	18	3	11	19	4	12	20	5	13	21	6	14	22	7	15
9	0	9	18	4	13	22	8	17	3	12	21	7	16	2	11	20	6	15	1	10	19	5	14
10	0	10	20	7	17	4	14	1	11	21	8	18	5	15	2	12	22	9	19	6	16	3	13
11	0	11	22	10	21	9	20	8	19	7	18	6	17	5	16	4	15	3	14	2	13	1	12
12	0	12	1	13	2	14	3	15	4	16	5	17	6	18	7	19	8	20	9	21	10	22	11
13	0	13	3	16	6	19	9	22	12	2	15	5	18	8	21	11	1	14	4	17	7	20	10
14	0	14	5	19	10	1	15	6	20	11	2	16	7	21	12	3	17	8	22	13	4	18	9
15 16	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	15 16	9	22	14	6	21	13 20	5 13	20 6	12 22	4 15	19	11	3 17	18 10	10 3	19	17 12	9 5	1 21	16 14	8
17	0	17	11	5	22	16	10	4	21	15	9	3	20	14	8	2	19	13	7	1	18	12	6
18	0	18	13	8	3	21	16	11	6	10	19	14	9	4	22	17	12	7	2	20	15	10	5
19	0	19	15	11	7	3	22	18	14	10	6	2	21	17	13	9	5	1	20	16	12	8	4
20	0	20	17	14	11	8	5	2	22	19	16	13	10	7	4	1	21	18	15	12	9	6	3
21	0	21	19	17	15	13	11	9	7	5	3	1	22	20	18	16	14	12	10	8	6	4	2
22	0	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Public parameter creation							
A trusted party chooses and publishes a (large) prime p							
and an integer g having large prime order in \mathbb{F}_p^* .							
Private con	Private computations						
Alice	Bob						
Choose a secret integer a .	Choose a secret integer b.						
Compute $A \equiv g^a \pmod{p}$.	Compute $B \equiv g^b \pmod{p}$.						
Public exchange of values							
Alice sends A to Bob —	Alice sends A to Bob \longrightarrow A						
$B \leftarrow$ Bob sends B to Alice							
Further private computations							
Alice	Bob						
Compute the number $B^a \pmod{p}$.	Compute the number $A^b \pmod{p}$.						
The shared secret value is $B^a \equiv$	$(g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}.$						

Table 2.2: Diffie–Hellman key exchange

Public parameter creation							
A trusted party chooses and publishes a large prime p							
and an element g modulo p of large (prime) order.							
Alice	Bob						
Key creation							
Choose private key $1 \le a \le p-1$.							
Compute $A = g^a \pmod{p}$.							
Publish the public key A .							
Encryption							
	Choose plaintext m .						
	Choose random element k .						
	Use Alice's public key A						
	to compute $c_1 = g^k \pmod{p}$						
	and $c_2 = mA^k \pmod{p}$.						
	Send ciphertext (c_1, c_2) to Alice.						
Decryption							
Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.							
This quantity is equal to m .							

Table 2.3: Elgamal key creation, encryption, and decryption

Bob	Alice
Key cı	reation
Choose secret primes p and q .	
Choose encryption exponent e	
with $gcd(e, (p-1)(q-1)) = 1$.	
Publish $N = pq$ and e .	
Encry	ption
	Choose plaintext m .
	Use Bob's public key (N, e)
	to compute $c \equiv m^e \pmod{N}$.
	Send ciphertext c to Bob.
Decry	ption
Compute d satisfying	
$ed \equiv 1 \pmod{(p-1)(q-1)}.$	
Compute $m' \equiv c^d \pmod{N}$.	
Then m' equals the plaintext m .	

Table 3.1: RSA key creation, encryption, and decryption

Samantha	Victor							
Key creation								
Choose secret primes p and q .								
Choose verification exponent e								
with								
$\gcd(e, (p-1)(q-1)) = 1.$								
Publish $N = pq$ and e .								
Signing								
Compute d satisfying								
$de \equiv 1 \pmod{(p-1)(q-1)}.$								
Sign document D by computing								
$S \equiv D^d \pmod{N}$.								
Verific	cation							
	Compute $S^e \mod N$ and verify							
	that it is equal to D .							

Table 4.1: RSA digital signatures

Public parameter creation								
A trusted party chooses and publishes a large prime p								
and primitive root g modulo p .								
Samantha	Victor							
Key creation								
Choose secret signing key								
$1 \le a \le p-1$.								
Compute $A = g^a \pmod{p}$.								
Publish the verification key A .								
Signing								
Choose document $D \mod p$.								
Choose random element $1 < k < p$								
satisfying $gcd(k, p - 1) = 1$.								
Compute signature								
$S_1 \equiv g^k \pmod{p}$ and								
$S_2 \equiv (D - aS_1)k^{-1} \pmod{p-1}.$								
Verification								
	Compute $A^{S_1}S_1^{S_2} \mod p$.							
	Verify that it is equal to $g^D \mod p$.							

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation								
A trusted party chooses and publishes large primes p and q satisfying								
$p \equiv 1 \pmod{q}$ and an element g of order q modulo p .								
Samantha	Victor							
Key cı	Key creation							
Choose secret signing key								
$1 \le a \le q-1$.								
Compute $A = g^a \pmod{p}$.								
Publish the verification key A .								
Signing								
Choose document $D \mod q$.								
Choose random element $1 < k < q$.								
Compute signature								
$S_1 \equiv (g^k \bmod p) \bmod q$ and								
$S_2 \equiv (D + aS_1)k^{-1} \pmod{q}.$								
Verific	cation							
	Compute $V_1 \equiv DS_2^{-1} \pmod{q}$ and							
	$V_2 \equiv S_1 S_2^{-1} \pmod{q}.$							
	Verify that							
	$(g^{V_1}A^{V_2} \bmod p) \bmod q = S_1.$							

Table 4.3: The digital signature algorithm (DSA)