Problem Set 5 Math 252, Spring 2019

Written problems

1. Evaluate the discrete logarithm log,, 33 in Z/737Z using the Pohlig-Hellman algorithm, ac-
cording to the following steps (see the statement of Theorem 2.31 in the textbook for details
on the notation). You may use, without proof, the fact that 40 is a primitive root modulo 73.

(a) Let N be the order of 40 (mod 73). Factor N into prime powers as N = gi* - - - g;*.

(b) Determine the numbers g; and h; for each i from 1 to ¢ inclusive. For each ¢, what is the
order of g; modulo 737

(c) For each i, evaluate the discrete logarithm y; = log,, h; in Z/73Z, using a method of
your choice.

(d) Solve the system of congruences x = y; (mod ¢;’) to obtain the discrete logarithm
x = logyq 33.

Note: The remaining three written problems concern material that we won’t cover until Friday
3/8.

2. Textbook exercise 3.7 (3.6 in first edition) (RSA example)
3. Textbook exercise 3.8 (3.7 in first edition) (Cracking RSA by factoring)

4. Textbook exercise 3.11 (3.10 in first edition) (a proposed, but ultimately insecure, alternative

to RSA)
Programming problems

The first three problems are building blocks towards an implementation of the Pohlig-Hellman
algorithm. The last problem assembles these various pieces together; you should paste the
functions you write in the first three problems into your code for the fourth and use them in
your solution.

1. Write a function ppFactor (N) which accepts an integer N > 2, and returns a list of the prime
powers (all powers of different primes) factoring NV, in any order. For example, if N = 12 the
function should return either [4,3] or [3,4]. The integer N may be quite large (up to 1024
bits), but you may assume that all of the prime-power factors are 16 bits or smaller.

Suggested approach: There are many ways to do this, and certainly many more efficient than
what I'm about to describe, but here is one relatively quick-to-implement approach. Write a
for loop to iterate through all numbers p from 2 to 2'6. For each number, check whether it
divides N. If so, divide N by p repeatedly until it is no longer divisible by p (and replace N
by the new value), then add the appropirate power of p to the list you will eventually return.
As long as you shrink N as you go, you will never find that p | N unless p is in fact prime,
since any smaller factor would have already been found to divide N.

2. Write function bsgsBoundedOrder(g,h,p,q) to solve the discrete logarithm function ¢* = h
(mod p) under the assumption that the order of g is at most ¢. You may assume that p is a
prime number, but unlike the previous set it will be quite large (256 bits). The integer ¢ will
be various sizes, up to 40 bits. Any correct solution x will be marked correct, even if it is not
the smallest possible solution.

due Wednesday 3/20 by 10pm. page 1 of

Problem Set 5 Math 252, Spring 2019

Note: The time limit is set to 1 second on Gradescope as usual, which may be slightly tight
on the largest cases. Let me know if you are running into the time limit so that I can suggest
improvements. I may extend the time limit if it seems that generally efficient implementations
are not quite meeting it.

3. Write a function crtList (1s) that takes a list 1s of pairs (a;, m;) of integers, with any two of
the values m; relatively prime, and returns a pair (a, m) such that the system of congruences
x = a; (mod m;) is equivalent the single congruence z = a (mod m), and 0 < a < m (i.e. a
is reduced modulo m).

For example, crtList([(2,3), (3,5), (0,2)]) should return (8,30), since the system
of three congruences x = 2 (mod 3),x =3 (mod 5),z =0 (mod 2) is equivalent to the single
congruence x = 8 (mod 30).

The integer a should be reduced modulo m, i.e. 0 < a < m. The moduli m; will be integers
up to 256 bits in length, and the list will contain up to 128 entries.

4. Implement the Pohlig-Hellman algorithm. That is, write a funciton ph(g,h,p) that solves
the discrete logarithm problem ¢* = h (mod p) under the assumption that p is a “weak”
prime, in the sense that p — 1 factors into small prime factors. More specifically: you may
assume that p — 1 factors into prime powers, all 16 bits or smaller, but p will be 64 bits in
length.

due Wednesday 3/20 by 10pm. page 2 of

