
Problem Set 7 Math 252, Spring 2019

Refer to the second page of the Course Survey for instructions on submitting written work on
Gradescope.

Written problems

1. Textbook exercise 3.22 (3.21 in 1st edition) (Pollard’s algorithm examples)

2. Textbook exercise 4.2 (7.2 in 1st edition) (RSA signature examples)

3. Textbook exercise 4.6 (7.5 in 1st edition) (ElGamal signature examples)

4. Textbook exercise 4.7 (7.6 in 1st edition) (ElGamal “blind signatures”)

Programming problems

1. Implement Pollard’s factoring algorithm, and use it to attempt to break 96-bit RSA encryp-
tion. More specifically: you should write a function pollardRSA(N,e,c) that takes an RSA
public key (N, e) and ciphertext c, and attempts to extract the plaintext. For the grading
test-cases, I have generated 96-bit RSA moduli without making any effort to choose strong
primes; as a result, some of these moduli are more susceptible to Pollard’s algorithm than
others. However, many cases will not be unually susceptible to Pollard, so for full points
on this problem your code only needs to solve 10 of the 50 test cases. But you may enjoy
trying variations on Pollard’s algorithm (or another factoring algorithm altogether) to see
how many test-cases you are able to solve. I will enable an “leaderboard” on Gradescope to
show the five highest scores obtained (your real name will not be used if you don’t wish to
use it; Gradescope will allow you to choose a pseudonym for the leaderboard).

The sample cases (from the testing notebook) will include a few smaller cases to help debug
your program, then ten 96-bit cases that I have specifically chosen to be susceptible to Pollard.
So the sample cases will give you a sense of whether Pollard’s algorithm is implemented well,
but don’t necessarily indicate that it will pass all of the cases on Gradescope.

2. We’ve discussed in class the need for choosing primes p such that p− 1 has a large prime fac-
tor, and also mentioned that it is also a good idea to ensure that p + 1 also has a large
prime factor (for reasons we won’t discuss). In this problem, you will write a function
strongPrime(qbits,pbits) to construct such a prime. You will be given integers qbits

and pbits, and should return 3 prime numbers q1, q2, p such that both q1 and q2 are at least
qbits bits long, p is exactly pbits bits long, and such that q1 | (p − 1) and q2 | (p + 1). As
with last week’s makeQP problem, I recommend choosing the subordinate primes q1, q2 first,
and using these to narrow the search for the last prime p.

3. This problem concerns a modular arithmetic problem that we have not yet considered, but
which is important to the last programming problem. You will be given integers m, b, and N ,
and your goal is to solve the congruence mx ≡ b (mod N) for x. When m is relatively prime
to N , this is accomplished by multiplying by the inverse of m; you should figure out how to
solve such a congruence in cases where m may have common factors with N . It is possible
that no solutions exist. If solutions exist, they can all be described in a single congruence
x ≡ r (mod M), where r,M are integers and M is not necessarily the same as N . Write a
function linearCong(m,b,N) that either returns None if no solutions exist, or returns a pair
(r,M) describing the general solution if solutions do exist.
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Hint: re-write the original congruence as an equatoin with one more variable, and try to
convert it to a congruence (possibly with a different modulus) in which the coefficient of x is
invertible.

4. When using ElGamal digital signatures, it is essential that Samantha always generates her
ephemeral key at random (much like in ElGamal encryption). In this problem, you will study
why it is particularly dangerous to use the same ephemeral key twice. You will be given the
public ElGamal parameters p,g, Alice’s public key A, two documents d1,d2, and valid sig-
natures (s11,s12),(s21,s22) for the two documents (respectively). The two signatures were
generated using the same ephemeral key. Write a function extractKey(p,g,A,d1,s11,s12,d2,s21,s22)

that extracts and returns Alice’s private key a from this information.

Hint: if you carefully manipulate the two congruences Samantha used to sign the documents,
you can derive a congruence of the form ma ≡ b (mod p− 1), where m and b are values you
can compute and a is the private key that you are trying to find. Unfortunately, it is possible
that m is not invertible modulo p − 1. You can use the solution to the previous problem to
“solve” this congruence to obtain a congruence that may not determine a uniques; you’ll need
to figure out how to get from here to the specific value of a.
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