- 1. (a) [5 points] Find integers u and v such that 101u + 80v = 1. Clearly show the process you have used to compute them.
 - (b) [2 points] Determine $80^{-1} \pmod{101}$.
 - (c) [5 points] Solve the following pair of congruences. Your answer should be a single congruence that describes *all* possible solutions.

$$n \equiv 2 \pmod{80}$$
$$n \equiv 7 \pmod{101}$$

2. [7 points] Alice and Bob are performing Diffie-Hellman key exchange (see back page for the textbook's reference table) with parameters

$$p = 103, g = 5.$$

For her secret number a, Alice chooses

$$a = 33.$$

Determine Alice's public number A. Clearly show the process you use to compute it; for full points you should use a process that would scale well to larger primes.

3. [7 points] Alice and Bob are using ElGamal encryption (see back page for the textbook's reference table), with the following public parameters.

$$p = 31, g = 3.$$

Alice publishes the following public key.

A = 22

Use the Babystep-Giantstep Algorithm (Shank's algorithm) to determine Alice's private key *a*. Clearly show all steps, including the two lists that you use to check for a collision.

- 4. Let p be a prime number, and g an element of $(\mathbb{Z}/p\mathbb{Z})^*$.
 - (a) [3 points] Define what it means for g to be a *primitive root* modulo p.
 - (b) [3 points] Prove that if g is a primitive root modulo 29, then $g^8 \pmod{p}$ has order 7.
 - (c) [3 points] Prove that if g is a primitive root modulo 29, then g^3 is also a primitive root modulo 29.

Reference tables from textbook:

		A trusted party chooses and publishes a large prime p	
		and an element g modulo p of large (prime) order.	
Public parameter creation		Alice	Bob
A trusted party chooses and publishes a (large) prime p		Key creation	
and an integer g having large prime order in \mathbb{F}_p^* .		Choose private key $1 \le a \le p - 1$.	
Private computations		Compute $A = g^a \pmod{p}$.	
Alice	Bob	Publish the public key A .	
Choose a secret integer a .	Choose a secret integer b .	Encryption	
Compute $A \equiv g^a \pmod{p}$.	Compute $B \equiv g^b \pmod{p}$.		Choose plaintext m .
Public exchange of values			Choose random element k .
Alice sends A to Bob $-$	$\longrightarrow A$		Use Alice's public key A
₿ ←	— Bob sends <i>B</i> to Alice		to compute $c_1 = g^k \pmod{p}$
			and $c_2 = mA^k \pmod{p}$.
Further private computations			Send ciphertext (c_1, c_2) to Alice.
Alice	Bob	Decryption	
Compute the number $B^a \pmod{p}$.	Compute the number $A^{b} \pmod{p}$.	Compute $(c_1^a)^{-1} \cdot c_2 \pmod{p}$.	
The shared secret value is $B^a \equiv$	$(g^b)^a \equiv g^{ab} \equiv (g^a)^b \equiv A^b \pmod{p}.$	This quantity is equal to m .	
			,

Table 2.2: Diffie-Hellman key exchange

Table 2.3: Elgamal key creation, encryption, and decryption $% \left({{{\mathbf{F}}_{{\mathbf{F}}}} \right)$

Public parameter creation