1. (a) [5 points] Find integers u and v such that $101 u+80 v=1$. Clearly show the process you have used to compute them.
(b) [2 points] Determine $80^{-1}(\bmod 101)$.
(c) [5 points] Solve the following pair of congruences. Your answer should be a single congruence that describes all possible solutions.

$$
\begin{aligned}
& n \equiv 2 \quad(\bmod 80) \\
& n \equiv 7 \quad(\bmod 101)
\end{aligned}
$$

2. [7 points] Alice and Bob are performing Diffie-Hellman key exchange (see back page for the textbook's reference table) with parameters

$$
p=103, g=5
$$

For her secret number a, Alice chooses

$$
a=33 .
$$

Determine Alice's public number A. Clearly show the process you use to compute it; for full points you should use a process that would scale well to larger primes.
3. [7 points] Alice and Bob are using ElGamal encryption (see back page for the textbook's reference table), with the following public parameters.

$$
p=31, g=3 .
$$

Alice publishes the following public key.

$$
A=22
$$

Use the Babystep-Giantstep Algorithm (Shank's algorithm) to determine Alice's private key a. Clearly show all steps, including the two lists that you use to check for a collision.
4. Let p be a prime number, and g an element of $(\mathbb{Z} / p \mathbb{Z})^{*}$.
(a) [3 points] Define what it means for g to be a primitive root modulo p.
(b) [3 points] Prove that if g is a primitive root modulo 29 , then $g^{8}(\bmod p)$ has order 7 .
(c) [3 points] Prove that if g is a primitive root modulo 29, then g^{3} is also a primitive root modulo 29.

Reference tables from textbook:

Table 2.2: Diffie-Hellman key exchange

Table 2.3: Elgamal key creation, encryption, and decryption

