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Read This First!

• The exam is due on Gradescope at Wednesday, April 29 at 10pm Eastern time.

• The exam is open-book and open-notes. You may also freely consult my online lecture notes
and anything on the course webpage.

• You may not discuss the problems with anyone except the instructor or Q Center staff. You
are free to ask the instructor clarifying questions. You may discuss your solutions with Q
Center staff if you wish, but they will not give substantial hints or suggestions.

• You may not ask these questions on any websites or search for solutions online.

• Please read each question carefully. Show ALL work clearly.

• In order to receive full credit on a problem, solution methods must be complete, logical and
understandable.

• You may cite any theorems proved in class or on the homework in your proofs, except in cases
where the statement to be proved is essentially the same as a theorem proved earlier. In that
case you should write out the full proof. Please ask me if you are uncertain about whether
you should prove a theorem or if it is enough to cite it.

• Please write solutions to each problem on a separate page. Include all of your
scratchwork in your scanned document. Any pages of scratchwork that you do not want
graded should still be included; put these at the back of your scanned file, and label them as
“scratchwork.”

Grading - For Instructor Use Only

Question: 1 2 3 4 Total

Points: 12 12 12 12 48

Score:
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0. Write out the following sentence, and sign your name: “The attached work is entirely my own.
I have not discussed the problems with anyone except course staff, and have not attempted to
find solutions online.” (This page does not need to be labelled with a problem on Gradescope.)

1. [12 points] Alice and Bob are using RSA encryption. Alice publishes the following public key.

N = 64777

e = 11

Bob sends the following ciphertext to Alice.

c = 42675

Use a brute-force approach to extract Alice’s private key and determine Bob’s plaintext m.
You should use a computer for the computations, but clearly explain what you have done and
how you have used the computer to do it.

2. [12 points] Let E be the elliptic curve over Q (EDIT: you can just think of this as a curve over
R; the result will be the same) defined by the equation

y2 = x3 − x + 1.

Let P be the point (1, 1). Determine the point (−3) ·P . Do the arithmetic by hand, and show
your computations (but you may use a computer to check your arithmetic).

3. [12 points] Suppose that Samantha and Victor use the following variation on DSA. The system
uses the same public parameters p, q, g as DSA (notation as in Table 4.3 of the textbook).
Rather that publishing a single verification key A, Samantha chooses two secret signing keys
a1, a2, and publishes two verification keys A1, A2 such that

A1 ≡ ga1 (mod p), and

A2 ≡ ga2 (mod p).

A signature on a document D consists of a pair of integers (S1, S2). When he receives a
document D with signature (S1, S2), Victor will use the following verification procedure.

• Compute V1 ≡ DS−1
2 (mod q) and V2 ≡ S1S

−1
2 (mod q) (as in DSA).

• Verify that (
(AV1

1 AV2
2 )%p

)
%q = S1.

(If this equation is false, the signature is considered invalid.)

Devise an (efficient) signing procedure that Samantha could follow to produce valid signatures.
Write out your procedure as a Python function (receiving a document D and the parameters
and private keys as input), and prove that your program returns a valid signature according to
Victor’s procedure above.

I will not deduct points for syntax errors, as long as it is clear what you mean. You may use
the built-in Python function pow for fast modular powers, and you may assume that you have
implemented an efficient function modinv to compute modular inverses. EDIT: you may also
make use of any functions from the random library to generate random numbers. Any other
needed helper functions should be implemented in your written solution.
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4. This problem concerns an adaptation of the Pohlig-Hellman algorithm to the Elliptic Curve
Discrete Logarithm Problem (ECDLP).

Suppose that E is an elliptic curve over Z/pZ, and P ∈ E is a point of order 143. Note that
143 factors as 11 · 13. Suppose that Q is another point on the curve, and that Eve wishes to
find an integer n such that n · P = Q.

Define four more points on E as follows.

P1 = 13 · P
Q1 = 13 ·Q
P2 = 11 · P
Q2 = 11 ·Q

(a) [4 points] Prove that ordE(P1) = 11 and ordE(P2) = 13.

(b) [6 points] Suppose Q ∈ E is another point on the curve, and that n1, n2 ∈ Z are integers
such that n1 · P1 = Q1 and n2 · P2 = Q2. Prove that if an integer n satisfies n · P = Q
then n must satisfy the following two congruences.

n ≡ n1 (mod 11)

n ≡ n2 (mod 13)

(The converse is also true, but you do not need to prove it).

(c) [2 points] Briefly explain why part (b) may be useful to Eve in her attempt to solve
n · P = Q.

Please remember to include all your scratchwork in your scanned document, even pages you do
not wish to have graded. These pages do not need to be labelled to a problem when submitting
on Gradescope.


