
Problem Set 3 Math 252, Spring 2020

Refer to the second page of the Course Survey for instructions on submitting written work on
Gradescope, and to the instructions on Problem Set 1 for developing and submitting programming
problems.

Written problems

1. Textbook exercise 1.24, part (a). (Solving two simultaneous congruences)

2. This problem shows one way in which congruences are compatible with exponentiation. The
important point to notice is that a different modulus is relevant in the exponent than
in the base. Suppose that p is a prime number, and g ∈ (Z/pZ)×.

(a) Suppose that n is any integer such that gn ≡ 1 (mod p), and a, b are two integers such
that a ≡ b (mod n). Prove that ga ≡ gb (mod p).

(b) Suppose now that n is the order of g (mod p), and assume that g is a unit modulo p.
Prove that for any two integers a, b,

a ≡ b (mod n) if and only if ga ≡ gb (mod p).

(For one direction of the “if and only if,” you simply need to cite part (a). The other
direction requires a separate argument, using specific properties of the order.)

3. Let p be prime, y ∈ (Z/pZ)×, and let k be a positive integer such that gcd(k, p − 1) = 1.
Prove that the congruence xk ≡ y (mod p) has a unique solution modulo p (here, “unique
modulo p” means that if x1, x2 are both solutions then x1 ≡ x2 (mod p)).

Hint: use the fact that k has an inverse modulo p− 1, and apply Problem 2, part (a).

4. Textbook exercise 1.33, part (a). (a way to find order-q elements)
Also read part (b) and think about it; you don’t need to write up a solution, but the statement
may help you think about how to solve Programming Problem 3).

5. Textbook exercise 1.34, parts (a), (b), and (c). (Identifying primitive roots by hand for some
small primes)

Programming problems

1. Write a function modpow(a,n,m) that takes integers a, n,m and returns an (mod m). The
exponent n may be positive or negative (it will be positive in at least half of the test cases),
but you may assume that if n < 0, then a is a unit modulo m (you’ll need to use your code
from the previous problem to handle the n < 0 case). For this problem, please do not
use Python’s built-in function for modular powers. You should implement the
fast-powering algorithm yourself to see how it works. However, you may look up
and use the built-in function on all programming assignments after this one. The
test cases will range in size, with a and n 256-bit integers in the largest case.

2. Write a function dh(g,p,B) that performs Alice’s role in Diffie-Hellman key exchange, using
a randomly chosen secret number a. More precisely: you are given a prime number p, an
element g ∈ Z/pZ, and Bob’s transmission B. Your function should return a pair of two
numbers A,S, where A is the number you transmit to Bob, and S is the shared secret. You
should look up how to generate random numbers in Python (don’t worry about finding a
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“cryptographically secure” random number generator, just use the standard one in Python).
The prime p will be between 16 and 256 bits long, and the autograder will run your code
several times on each input to make sure that it appears to be choosing the secret number a
randomly.

3. Write a function findOrderQ(q,p) that takes two prime numbers q and p and returns an
element g ∈ Z/pZ of order q if possible. See Written Problem 4 for a way to do this. If it is
not possible to find such an element g, your function should return None.

4. Write a function kthroot(k,y,p), that takes an integer y, a prime p, and an element
y ∈ Z/pZ, and determines an element x ∈ Z/pZ such that xk ≡ y (mod p). You may assume
that gcd(k, p − 1) = 1 in all test cases. In the largest test cases, p will be 256 bits long, but
a naive approach will receive partial credit.

Hint: make use of Written Problem 2, part (b).
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