
Problem Set 7 Math 252, Spring 2020

Written problems

1. Textbook exercise 3.11 (a proposed, but ultimately insecure, alternative to RSA)

2. Textbook exercise 3.13 (Danger of repeating the same modulus with different encrypting
exponents)

3. Give a careful proof of the following fact, which was mentioned in class on Friday 3/27. If
p is a prime number, and d, e are positive integers such that de ≡ 1 (mod p − 1), then for
all integers a, ade ≡ a (mod p). As mentioned in class, this is essentially the same thing as
Theorem 2 from 3/25 Lesson 1, for which a proof was sketched; you should fill in the details
if citing that Theorem.

4. This problem pins down a necessary and sufficient condition for an integer d to be a valid
“deciphering exponent” for an integer e in RSA. Let p, q be distinct primes, let N = pq, and
let L be the least common multiple of p− 1 and q − 1.

(a) Prove that for all a ∈ (Z/NZ)×, ordN (a) is the least common multiple of ordp(a) and
ordq(a) (use the Chinese Remainder Theorem).

(b) Prove that there exists an element a ∈ (Z/NZ)× with ordN (a) = L.

(c) Prove that if d, e are positive integers such mde ≡ m (mod N) for all m ∈ Z/NZ, then
de ≡ 1 (mod L). (Hence it is necessary for d and e to be inverses modulo L in order for
d to be a deciphering exponent for e.)

(d) Prove that if d, e are positive integers such that de ≡ 1 (mod L), thenmde ≡ m (mod N)
for all m ∈ Z/NZ. (Hence this is also a sufficient condition.)

5. Textbook exercise 3.19 (making rigorous sense of the “probability 1
ln(n)” interpretation of the

Prime Number Theorem; two parts)

6. Textbook exercise 3.20, parts (a) and (b) (The probability interpretation for primes in a
congruence class)

Programming problems

1. In written problem 2, you saw that it is unsafe to use the same modulus N in two different
RSA public keys. In this problem, you will implement the algorithm that Eve could use to
exploit that situation, in a more general context.

Suppose that you know a modulus N , two relatively prime integers e, f , and two powers me

(mod N) and mf (mod N) of an unknown integer m. You may assume that m is a unit
modulo N . Write a function mFromPowers(N,e,f,me,mf) that computes and returns the
unknown integer m (you should return m reduced modulo N , i.e. 0 ≤ m < N). The integer
N will be 1000 bits long in the largest test cases, but a naive approach will earn partial credit.

Note: this algorithm has peaceful uses as well. In fact, you can think of RSA decryption as a
special case: when Alice receives an RSA message, she knows me (mod N) and mf (mod N),
where f = (p−1)(q−1) (mf ≡ 1 (mod N) in this case). Since gcd(e, (p−1)(q−1)) = 1, this
function would be able to decipher the message. Take some time to think about why only
Alice can do this, and not Eve.
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2. Alice decides that she wants to receive messages using a non-standard variant of RSA. Like
in the usual RSA, she will choose a public key N, e, where N is a number whose factorization
she knows, and gcd(e, φ(N)) = 1. In this case, she will take N = pqr, where p, q, r are distinct
primes. To encrypt a message m for Alice (0 ≤ m < N), Bob computes c ≡ me (mod N).
Write a function rsaThreePrimes(p,q,r,e,c) to do the following: given the three primes
p, q, r, the number e, and the ciphertext c sent by Bob, recover the original plaintext m.

Note. While this setup is perfectly functional, in practice it is more efficient to use products
of two primes, hence that is the standard. I encourage you to think about why it is more
efficient to use only two primes.
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