
MATH 158
FINAL EXAM

17 DECEMBER 2015

Name :

Comment (2022): this exam is from an older version of this course, taught at Brown.
There are some differences of style and emphasis compared to Math 252 here. Questions
about material we haven’t covered are crossed out in this document.

• The time limit is three hours.
• No calculators are permitted.
• You are permitted one page of notes, front and back.
• The textbook’s summary tables for the systems we have studied are provided at the
back.

• For any problem asking you to write a program, you may write in a language of
your choice or in pseudocode, as long as your answer is sufficiently specific to tell the
runtime of the program.

• Point values are as indicated in the table below.

1 /10 2 /10

3 /10 4 /10

5 /10 6 /10

7 /10 8 /10

9 /10 10 /10

11 /15 12 /15∑
/130



(1) Consider the elliptic curve Y 2 = X3 +X − 1 over Z/5.
(a) Determine the number of points on this curve (including the point O).

(b) Determine the order of the point P = (1, 1).



(2) Explain briefly why each of the following choices is made in DSA. Be specific about
which mathematical facts would make the algorithm either incorrect or insecure oth-
erwise.

(a) The number q is a prime number.

(b) The numbers p, q satisfy p ≡ 1 (mod q).

(c) The number k is selected at random.



(3) Alice’s RSA public key has modulus N . Bob cannot remember whether her encrypt-
ing exponent is 16 or 27. In a well-meaning but very foolish blunder, he decides to
encrypt his message m with both possible encrypting exponents, creating c1 (using
e = 16) and c2 (using e = 27). Bob uses the correct modulus N in both cases. He
then sends both c1 and c2 to Alice, with an explanation of what happened. Eve
intercepts c1 and c2, as well as the information of which exponent was used to create
which ciphertext.

Express m in terms of c1 and c2 using arithmetic modulo N . This will show that
Eve can learn the plaintext m without much effort.



(4) The following function definition is meant to calculate the sum of two points P,Q on
the elliptic curve Y 2 = X3 + AX + B over Z/p, but it contains a flaw. Explain the
case in which the code will not work properly, and how to fix it.

Assumptions : each point (P,Q, or the return value) is either a pair (x, y) of two
integers with 0 ≤ x, y < p, or the number 0 (for the point O). You may assume
that both P and Q do in fact lie on the curve defined by A and B. Also assume
that inv mod(a,m) is a correctly implemented function that returns the inverse of a
modulo m whenever a is a unit modulo m, but which results in an error if a is not a
unit modulo m.

def add(P,Q,A,B,p):

if P==0: return Q

if Q==0: return P

if P[0] == Q[0] and P[1] != Q[1]: return 0

if P[0] != Q[0]:

rise = (P[1] - Q[1]) % p

run = (P[0] - Q[0]) % p

else:

rise = (3*P[0]*P[0] + A) % p

run = (2*P[1]) % p

slope = (rise*inv_mod(run,p)) % p

y_int = (P[1] - P[0]*slope) % p

x = (slope*slope - P[0]-Q[0]) % p

y = (-(slope*x + y_int)) % p

return (x,y)



(5) Write a function pickg(p,q) with the following behavior: if p, q are both prime
numbers, then the return value must be either a number a between 1 and p − 1
inclusive with order q modulo p, or the number −1 if no such integer a exists. Your
function may be randomized. For full points the (expected value of the) number of
arithmetic operations performed by the function must be O(log p).



(6) Suppose that Samantha is using ECDSA parameters with q = 7. She has published
two valid signatures: (2, 3) for the document d = 4, and (2, 6) for the document
d′ = 5. Eve learns that she used the same random element e to produce both signa-
tures. Determine Samantha’s secret signing key, s.

Note. I am withholding the information of Samantha’s public key and the system
parameters for this problem, since the numbers are small enough that a brute force
solution would be possible. In reality, of course, Eve would know all of this, but q
would also be large enough that brute force would not be feasible.



(7) Suppose that Eve has intercepted a ciphertext from Bob to Alice. In addition, she
knows by other means that the plaintext is one of only 1000 possibilities (for example,
it might specify a landmark where Alice and Bob will meet, written in a predictable
format and chosen from a short list of options). As usual, Eve knows Alice’s public
key, but not her private key.

(a) Suppose that the cryptosystem being used is RSA. Explain how Eve can very
quickly identify for certain which of the 1000 candidates is the true plaintext.

Comment (2022): The following problem concerns a cryptosystem we are not
discussing this semester.

(b) Suppose that the cryptosystem being used is Menezes-Vanstone (table 6.13).
Describe a procedure Eve could use that, with very high probability, will pick out
the correct plaintext from the list. (More formally: your procedure should have
the property that if the 999 false plaintexts were chosen uniformly at random,
then the probability of choosing one of them should be negligible.)



(8) The NTru procedure (table 7.4) stipulates that p and q should be chosen such that
gcd(p, q) = 1. Suppose that parameters are chosen that do not obey this rule, and
instead p | q. In this case, the system is completely insecure. Write a function that
Eve could use to can break it.

Specifically: write a function extract(e,N,p,q,d,h) that efficiently extracts the
plaintext m from any cipher text e, given only the public key and system parameters,
and assuming that p divides q. The arguments e and h will be given as lists of N
integers. The coefficients in your answer should be either centerlifted modulo p or
reduced modulo p in the typical way.



(9) Suppose that P,Q are two points on an elliptic curve over Z/9719 (the number
p = 9719 is prime). The order of the elliptic curve is a prime number q, and neither
P nor Q is O. Alice has constructed the following two lists of points.

[O, P, 2P, · · · , 99P ]

[Q, Q⊖ 100P, Q⊖ 200P, · · · , Q⊖ 9900P ]

Prove that there must exist a common element between these two lists, and describe
how finding this common element can be used to find an integer n such that Q = nP .



(10) Suppose that the NTru cryposystem (Table 7.4) is modified in the following ways.
• The single integer d in the parameters is replaced with three integers d1, d2, d3
such that d1 > d2 > d3. The requirement that q > (6d+ 1)p is removed.

• When Alice chooses f , she chooses it from T (d1 + 1, d1).
• When Alice chooses g, she chooses it from T (d2, d2).
• When Bob chooses r, he chooses it from T (d3, d3).

Derive an inequality of the form “q > · · · ” (to replace q > (6d+1)p from the original
version) in terms of d1, d2, d3 (not all three of which must necessarily be used) and
the other public parameters, such that decryption is guaranteed to succeed as long
as this inequality holds.



(11) Samantha and Victor agree to the following digital signature scheme. The public
parameters and key creation are identical to those of ECDSA. The verification pro-
cedure is different: to decide whether (s1, s2) is a valid signature for a document d,
Victor computes

w1 ≡ s−1
1 d (mod q)

w2 ≡ s−1
1 s2 (mod q),

then he check to see whether or not

x(w1G⊕ w2V )%q = s1.

If so, he regards (s1, s2) as a valid signature for d.

(a) Describe a signing procedure that Samantha can follow to produce a valid sig-
nature on a given document d. The procedure should be randomized in such a
way that it will generate different signatures if executed repeatedly on the same
document.



(b) Describe a forgery procedure that Eve can follow to create a signature (s1, s2)
and a document d such that (s1, s2) is a valid signature for d under this scheme.
Note that Eve does not need to be able to choose d in advance. The procedure
should be randomized in such a way that it can generate many different forgeries
(on many different documents).



(12) Comment (2022) we are not discussing this factoring method in this semester’s course.

Suppose that n is an odd integer such that exactly 1
32

of all units modulo n are
squares (i.e. are congruent to some integer square modulo n). Alice wishes to factor
n. Suppose that Alice chooses m distinct elements a1, a2, · · · , am of {1, 2, · · · , n−1

2
}

at random.

(a) Suppose that Alice discovers that a2i ≡ a2j (mod n) for some i ̸= j. Write a
function factor(n,ai,aj) which returns a proper factor (i.e. a factor besides 1
or n) of n given the values ai and aj whose squares are congruent. For full credit,
your function should perform no more than O(log n) arithmetic operations.



(b) Assuming that allm of these elements ai are (distinct) units modulo n, prove that

the probability that a2i ≡ a2j (mod n) for some i ̸= j is at least 1− e−32(m2 )/ϕ(n).
You may assume without proof that e−x ≥ 1− x for all real numbers x. You
may also assume that the values a2i (mod n) is equally likely to be any of the
squares modulo n.

(c) Suppose that the assumption in part (b) fails, and in fact one of the ai is not a
unit modulo n. This is a feature, not a bug: describe how Alice can quickly find
a proper factor of n in this case, before she even looks for any collisions.



(additional space for work)

“Bonus” (to keep me happy during grading, not for real points): fill in cryptography-related
(or totally unrelated) dialog for this comic.
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