Problem Set 10 Math 252, Spring 2022

Note. Problem Set 10 is be longer than usual since there was no problem set due the week of the
exam, and is not due until Friday 13 May.

Written problems:

1. Samantha and Victor agree to the following digital signature scheme. The public parameters
and key creation are identical to those of ECDSA. The verification procedure is different: to
decide whether (s1, s2) is a valid signature for a document d, Victor computes

w; = s;'d (mod q)

Wy 51_152 (mod q),

then he checks to see whether or not
(w1 G ® waV)%q = s1.

If so, he regards (s1, s2) as a valid signature for d.

Determine a signing procedure for this signature scheme, i.e. a procedure that Samantha
can follow to produce a valid signature on a specific document. Your procedure should be
non-deterministic, like in ECDSA.

2. Consider the following variant of EC Diffie-Hellman key exhange, in which Alice and Bob only
exchange individual numbers, rather than both coordinates of a point on an elliptic curve.
e Public parameter creation: same as in table 6.5.
e Private computations: same as in table 6.5.

e Public exchange of values: Alice sends the x-coordinate of Q4 to Bob; Bob sends
the x-coordinate of Qp to Alice.

e Further private computations: Both Alice and Bob determine the x-coordinate of
(n4 -np)P. This is their shared secret value.

(a) Prove that if Q, Q" are two points on an elliptic curve with the same x-coordinate, and
n is any integer, then n@Q and n@Q’ also have the same z-coordinate.

(b) Describe how Alice is able to (efficiently) determine the shared secret, using only the
information that she knows. You may assume that Alice has an efficient algorithm to
determine square roots modulo p.

(c) What advantages, if any, does this system have over the usual ECDH system described
in table 6.57

3. Textbook exercise 7.1 (6.1 in 1st edition) (“1TRU” examples)

4. Suppose that the “ITRU” system (the system from the first section of §6 in the first edtion
and §7.1 of the second edition) is modified as follows.
e Four parameters F,G, M, R are chosen at the beginning, in addition to the modulus gq.

e When Alice makes her private and public keys, she chooses f, g so that 0 < f < F and
M < g < G. She then computes her public key h as before.
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e When Bob sends a message, he must choose his message m so that 0 < m < M, and he
must choose his random number r so that 0 < r < R. Then he computes e as before.

(a) What are the values of F, G, M, R (in terms of ¢) used in the original version of “1TRU?”

(b) Suppose Alice computes b from e as in “1TRU.” Write an inequality in terms of F, G, M, R,
and ¢ that will guarantee that the number b she computes is definitely equal to m.

(¢) Explain why decryption could fail if the requirement M < g were dropped in Alice’s
procedure for generating her public key.

5. Suppose that Alice and Bob are using NTRU with N = 251, ¢ = 131, p = 3, and d = 6.

(a) How many possible plaintexts are there? How many possible ciphertexts are there?

(b) Suppose every possible Bj-bit number is encoded in some way as an NTRU plaintext
(with these parameters). How large can B be for this to be possible? You don’t need
to describe an actual way to do this encoding, but I encourage you to think about how
it can be done! In all parts of this problem, you do not have to worry about
rounding up or rounding down to an integer; for example, feel free to express
your answer in terms of a logarithm. This simplifies the answers somewhat.

(¢) Suppose in turn that every cipher text is encoded as a Bs-bit number. How large must
B be in order for this to be possible?

(d) The message expansion ratio is the ratio By/Bj, where By, By are as above. What is
the message expansion ratio for NTRU with these parameters?

(e) Similarly, count the number of possible plaintext, and number of possible ciphertexts,
for RSA encryption and Elgamal encryption. What are the message expansion ratios for
those systems?

6. In some implementations of NTRU, rather than fixing one public parameter d, one chooses
three different parameters di, da, ds, and stipulates that Alice chooses f from T (d; 41, d;) and
g from T (da,d2), and Bob chooses r from 7 (d3,ds). Assuming that dy > da > d3, determine
an inequality of the form ¢ > --- to replace the inequality ¢ > (6d + 1)p in table 7.3,
serving the same purpose in this more general formulation (your inequality should specialize
to ¢ > (6d + 1)p in the case di = do = d3 = d).

Programming problems:

1. Write a function ecDLP(P,Q,A,B,p,q) to solve the elliptic curve discrete logarithm problem,
in cases where the prime p is up to 28 bits. Here, P,Q are points on the curve Y? =
X3 4+ AX + B (mod p), and you are given, for convenience, the number ¢ of points on
the curve (which you may assume to be prime). The function should return the minimum
nonnegative n such that n - P = ). Note that if you find any such solution n’, then you can
find the minimum solution by computing n’ (mod ¢) (we will discuss why this is true in class
soom).

A naive trial-and-error approach will earn partial credit, but to solve all test cases I recom-
mend adapting the BSGS algorithm to the setting of elliptic curves. Note: one issue you may
encounter is that it is not possible to place a “list” (e.g. [2,3]) into a Python dict. To
resolve this, make sure all of your elliptic curve points (besides Q) are represented as “tuples”
instead (e.g. (2,3), with parentheses instead of brackets).
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2. Write a function ecdsaVerify(V,d,s1,s2) that determines whether (s1, s9) is a valid ECDSA
signature for the document d and the public (verification) key V' (see p. 461 in the 1st edition
or p. 322 in the 2nd edition for notation regarding ECDSA), using Elliptic curve “P-384.”
You should look up the specifics of curve P-384, e.g. by finding the relevant information in
the standards document at the link below. You will also need to look up how to convert
hexadecimal strings to integers in Python.

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.186-4.pdf

You may enjoy looking through the standards document to see what other sorts of information
it contains.

3. In this problem, you will write several functions to work with “convolution polynomials,” i.e.
the set we have been denoting in class by R. These functions will be needed to implement
NTRU decryption. All five functions take an argument N, the number of coefficients in each
polynomial. For all five functions, elements of R will be represented in Python as a list of NV
integers; f[i] is the X* coefficient of the polynomial. You will write all five functions in the
same file; the test bank will test all of them.

The five functions are:

e addR(f, g, N), which should return f(z) + g(z) (as a list of N integers).

e scaleR(c, f,N), which takes an integer ¢, polynomial f(x) € R, and returns the product
¢ f(x) (scale all coefficients by c).

e convolveR(f, g, N), which takes two polynomials f(x),g(z) € R, and returns f * g.
e reduceR(f,p,N), which takes f(z) € R and returns the result of reducing f modulo p.

e centerliftR(f,p,N), which takes f(z) € R and returns the result of “centerlifting” f
modulo p (we discuss this concept on Friday).

4. Write a function decipherNTRU(N, p,q,d, h, f, g, Fp, Fq, e) that deciphers an NTRU ciphertext,
given all of Alice’s private information. See the NTRU summary table (p. 394 in 1st edition;
p. 419 in 2nd edition) for the notation (unfortunately, there’s a lot of it!). In input, all
elements of R will be “centerlifted,” so they may have both positive and negative coeflicients.
You should return the plaintext m centerlifted modulo p.

Note that you may discover that you do not need all ten of these arguments in order to
compute the result. I have included all of them for completeness. It’s also worth pointing out
that in principle I don’t need to tell you F, and F, since they can both be computed from
f, but I am not expecting you to implement the algorithms needed to do this.

5. This problem is now extra credit, since we may not cover the relevant content
until Wednesday 5/11.

You will be given the public parameter ¢, Alice’s public key h, and a ciphertext e for the con-
gruential cryptosystem (which I called “1TRU” in class). Write a function break1TRU(q, h, e)
that extracts the plaintext (without knowing the private key).

Half of the test cases will be small enough that a brute force approach should work. For the
remaining test cases I suggest that you use Gauss’s lattice basis reduction algorithm.
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