MATH 158
 MIDTERM EXAM 2 9 NOVEMBER 2016

Name :

Comment (2023): this exam is from an older version of this course, taught at Brown. There are some differences of style and emphasis compared to Math 252 here.

- The exam is double-sided. Make sure to read both sides of each page.
- The time limit is 50 minutes.
- No calculators are permitted.
- You are permitted one page of notes, front and back.
- The textbook's summary tables for the systems we have studied are provided on the last sheet. You may detach this sheet for easier reference.
- For any problem asking you to write a program, you may write in a language of your choice or in pseudocode, as long as your answer is sufficiently specific to tell the runtime of the program.

This page intentionally left blank.
(1) Use Shanks's "babystep-giantstep" algorithm to compute $\log _{5}[13]_{23}$ (that is, find an integer x such that $\left.5^{x} \equiv 13(\bmod 23)\right)$. Clearly label the two lists that you create and the common element between them. A multiplication table modulo 23 is provided at the back of the exam packet, for convenience.

Additional space for problem 1.
(2) Let $p=53, q=13, g=10$ be parameters for DSA (these satisfy the conditions in table 4.3). Suppose that Samantha has chosen the private signing key $a=7$. Using $k=2$ as the ephemeral key, compute a DSA signature for the document $D=3$. (Note: you do not need to calculate the public key A in order to solve this problem.)

Additional space for problem 2.
(3) Integers p and q are both primes, exactly 42 bits in length. The numbers $p-1$ and $q-1$ factor into primes as follows.

$$
\begin{aligned}
p-1 & =2 \cdot 29 \cdot 353 \cdot 433 \cdot 601 \cdot 821 \\
q-1 & =2 \cdot 2199023249261
\end{aligned}
$$

You may assume, without proof, that 2 is a primitive root modulo p and modulo q.
(a) Explain briefly why discrete logarithms modulo p can be computed much more rapidly than discrete logarithms modulo q (be specific about which algorithms are involved; you do not need to describe the algorithms in detail).
(b) Comment (2022): this problem concerns a factoring algorithm we are not discussing this semester. Let $N=p q$. Suppose that Eve attempts to factor N by calling the following function (this is similar to the code provided on Problem Set 7 , except that the initial value of a is chosen to be $a=2$, rather than chosen at random, and it does not bother to check whether or not a is a unit initially).

```
def pollardWith2(N):
    a = 2
    j = 2
    while fractions.gcd(a-1,N) == 1:
            a = pow(a,j,N)
            j += 1
    return fractions.gcd(a-1,N)
```

What will be the return value of this function when called on $N=p q$? How many times will the while loop iterate before returning this value?
(4) (a) Prove that if p is a prime number, and a is an integer such that $a^{2} \equiv 1(\bmod p)$, then either $a \equiv 1(\bmod p)$ or $a \equiv-1 \bmod p$.
(b) Suppose that p is a prime number, $p-1=2^{k} q$ for q an odd integer, and a is an integer with $1 \leq a \leq N-1$. Deduce from part (a) that either $a^{q} \equiv 1(\bmod p)$ or one of the numbers $a^{q}, a^{2 q}, a^{4 q}, \cdots, a^{2^{k-1} q}$ is congruent to -1 modulo p.
(5) Suppose that p, g are public parameters for Elgamal signatures (you may assume that g is a primitive root modulo p), and that Samantha's public verification key is A. Samantha publishes a valid signature $\left(S_{1}, S_{2}\right)$ for a document D, and Eve observes that S_{1} is exactly equal to g. This might occur if Samantha is not choosing her ephemeral key sufficiently randomly.
(a) Assuming that $\operatorname{gcd}(g, p-1)=1$, write a function extract ($\mathrm{p}, \mathrm{g}, \mathrm{A}, \mathrm{S} 1, \mathrm{~S} 2, \mathrm{D}$) that extracts Samantha's private signing key a from this information. You may assume that you have already implemented a function ext_euclid (a, b), which returns a list $[u, v, g]$ such that $g=\operatorname{gcd}(a, b)$ and $a u+b v=g$. Your code does not need to check that $S_{1}=g$, or that $\operatorname{gcd}(g, p-1)=1$; assume that it will only receive input meeting these conditions. Your code should be efficient enough to finish in a matter of seconds if all the arguments are 1024 bits long or shorter.
(b) Describe briefly how you would modify your code to work in the more general situation where $\operatorname{gcd}(g, p-1)$ is relatively small, but may not be equal to 1 . You do not need to write a second program; just clearly describe the steps that you would take.

Additional space for work.

Additional space for work.

Reference information. You may detach this sheet for easier use.

Multiplication table modulo 23

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
2	0	2	4	6	8	10	12	14	16	18	20	22	1	3	5	7	9	11	13	15	17	19	21
3	0	3	6	9	12	15	18	21	1	4	7	10	13	16	19	22	2	5	8	11	14	17	20
4	0	4	8	12	16	20	1	5	9	13	17	21	2	6	10	14	18	22	3	7	11	15	19
5	0	5	10	15	20	2	7	12	17	22	4	9	14	19	1	6	11	16	21	3	8	13	18
6	0	6	12	18	1	7	13	19	2	8	14	20	3	9	15	21	4	10	16	22	5	11	17
7	0	7	14	21	5	12	19	3	10	17	1	8	15	22	6	13	20	4	11	18	2	9	16
8	0	8	16	1	9	17	2	10	18	3	11	19	4	12	20	5	13	21	6	14	22	7	15
9	0	9	18	4	13	22	8	17	3	12	21	7	16	2	11	20	6	15	1	10	19	5	14
10	0	10	20	7	17	4	14	1	11	21	8	18	5	15	2	12	22	9	19	6	16	3	13
11	0	11	22	10	21	9	20	8	19	7	18	6	17	5	16	4	15	3	14	2	13	1	12
12	0	12	1	13	2	14	3	15	4	16	5	17	6	18	7	19	8	20	9	21	10	22	11
13	0	13	3	16	6	19	9	22	12	2	15	5	18	8	21	11	1	14	4	17	7	20	10
14	0	14	5	19	10	1	15	6	20	11	2	16	7	21	12	3	17	8	22	13	4	18	9
15	0	15	7	22	14	6	21	13	5	20	12	4	19	11	3	18	10	2	17	9	1	16	8
16	0	16	9	2	18	11	4	20	13	6	22	15	8	1	17	10	3	19	12	5	21	14	7
17	0	17	11	5	22	16	10	4	21	15	9	3	20	14	8	2	19	13	7	1	18	12	6
18	0	18	13	8	3	21	16	11	6	1	19	14	9	4	22	17	12	7	2	20	15	10	5
19	0	19	15	11	7	3	22	18	14	10	6	2	21	17	13	9	5	1	20	16	12	8	4
20	0	20	17	14	11	8	5	2	22	19	16	13	10	7	4	1	21	18	15	12	9	6	3
21	0	21	19	17	15	13	11	9	7	5	3	1	22	20	18	16	14	12	10	8	6	4	2
22	0	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Public parameter creation	
A trusted party chooses and publishes a (large) prime p and an integer g having large prime order in \mathbb{F}_{p}^{*}.	
Private computations	
Alice	Bob
Choose a secret integer a. Compute $A \equiv g^{a}(\bmod p)$.	Choose a secret integer b. Compute $B \equiv g^{b}(\bmod p)$.
Public exch Alice sends A to Bob B \qquad	nge of values Bob sends B to Alice
Further private computations	
Alice	Bob
Compute the number $B^{a}(\bmod p)$ The shared secret value is $B^{a} \equiv$	Compute the number $A^{b}(\bmod p)$. $\left(g^{b}\right)^{a} \equiv g^{a b} \equiv\left(g^{a}\right)^{b} \equiv A^{b}(\bmod p)$

Samantha	Victor
Key creation	
Choose secret primes p and q. Choose verification exponent e with $\operatorname{gcd}(e,(p-1)(q-1))=1$ Publish $N=p q$ and e.	
Signing	
Compute d satisfying $d e \equiv 1(\bmod (p-1)(q-1))$. Sign document D by computing $S \equiv D^{d}(\bmod N)$	
Verification	
	Compute $S^{e} \bmod N$ and verify that it is equal to D.

Table 2.2: Diffie-Hellman key exchange

Public parameter creation	
A trusted party chooses and publishes a large prime p and an element g modulo p of large (prime) order.	
Alice	Bob
Key creation	
Choose private key $1 \leq a \leq p-1$. Compute $A=g^{a}(\bmod p)$. Publish the public key A.	
Encryption	
	Choose plaintext m. Choose random element k. Use Alice's public key A to compute $c_{1}=g^{k}(\bmod p)$ and $c_{2}=m A^{k}(\bmod p)$. Send ciphertext $\left(c_{1}, c_{2}\right)$ to Alice.
Decryption	
Compute $\left(c_{1}^{a}\right)^{-1} \cdot c_{2}(\bmod p)$. This quantity is equal to m.	

Table 2.3: Elgamal key creation, encryption, and decryption

Bob	Alice
Key creation	
Choose secret primes p and q. Choose encryption exponent e with $\operatorname{gcd}(e,(p-1)(q-1))=1$. Publish $N=p q$ and e.	
Encryption	
	Choose plaintext m. Use Bob's public key (N, e) to compute $c \equiv m^{e}(\bmod N)$. Send ciphertext c to Bob.
Decryption	
Compute d satisfying $e d \equiv 1(\bmod (p-1)(q-1)) .$ Compute $m^{\prime} \equiv c^{d}(\bmod N)$. Then m^{\prime} equals the plaintext m.	

Table 3.1: RSA key creation, encryption, and decryption

Table 4.1: RSA digital signatures
Public parameter creation

Public parameter creation	
A trusted party chooses and publishes a large prime p and primitive root g modulo p.	
Samantha	Victor
Key creation	
Choose secret signing key $1 \leq a \leq p-1 .$ Compute $A=g^{a}(\bmod p)$. Publish the verification key A.	
Signing	
Choose document $D \bmod p$. Choose random element $1<k<p$ satisfying $\operatorname{gcd}(k, p-1)=1$. Compute signature $\begin{aligned} & S_{1} \equiv g^{k}(\bmod p) \text { and } \\ & S_{2} \equiv\left(D-a S_{1}\right) k^{-1}(\bmod p-1) . \end{aligned}$	
Verification	
	Compute $A^{S_{1}} S_{1}^{S_{2}} \bmod p$. Verify that it is equal to $g^{D} \bmod p$.

Table 4.2: The Elgamal digital signature algorithm

Public parameter creation			
A trusted party chooses and publishes large primes p and q satisfying			
$p \equiv 1(\bmod q)$ and an element g of order q modulo p.			
Samantha			
Victor			
Choose secret signing key			
$1 \leq a \leq q-1$.			
Compute $A=g^{a}(\bmod p)$.			
Publish the verification key A.			
Choose document $D \bmod q$			
Choose random element $1<k<q$.			
Compute signature			
$S_{1} \equiv\left(g^{k} \bmod p\right) \bmod q$ and			
$S_{2} \equiv\left(D+a S_{1}\right) k^{-1}(\bmod q)$.	Verification		
			Compute $V_{1} \equiv D S_{2}^{-1}(\bmod q)$ and
	$V_{2} \equiv S_{1} S_{2}^{-1}(\bmod q)$.		
	Verify that		
	$\left(g^{V_{1}} A^{V_{2}} \bmod p\right) \bmod q=S_{1}$.		

Table 4.3: The digital signature algorithm (DSA)

