
MATH 158
MIDTERM EXAM 2
9 NOVEMBER 2016

Name :

Comment (2023): this exam is from an older version of this course, taught at Brown. There
are some differences of style and emphasis compared to Math 252 here.

• The exam is double-sided. Make sure to read both sides of each page.
• The time limit is 50 minutes.
• No calculators are permitted.
• You are permitted one page of notes, front and back.
• The textbook’s summary tables for the systems we have studied are provided on the
last sheet. You may detach this sheet for easier reference.

• For any problem asking you to write a program, you may write in a language of
your choice or in pseudocode, as long as your answer is sufficiently specific to tell the
runtime of the program.



This page intentionally left blank.



(1) Use Shanks’s “babystep-giantstep” algorithm to compute log5[13]23 (that is, find an
integer x such that 5x ≡ 13 (mod 23)). Clearly label the two lists that you create and
the common element between them. A multiplication table modulo 23 is provided at
the back of the exam packet, for convenience.

More space for work on reverse side. (6 points)



Additional space for problem 1.



(2) Let p = 53, q = 13, g = 10 be parameters for DSA (these satisfy the conditions in
table 4.3). Suppose that Samantha has chosen the private signing key a = 7. Using
k = 2 as the ephemeral key, compute a DSA signature for the document D = 3.
(Note: you do not need to calculate the public key A in order to solve this problem.)

More space for work on reverse side. (6 points)



Additional space for problem 2.



(3) Integers p and q are both primes, exactly 42 bits in length. The numbers p− 1 and
q − 1 factor into primes as follows.

p− 1 = 2 · 29 · 353 · 433 · 601 · 821
q − 1 = 2 · 2199023249261

You may assume, without proof, that 2 is a primitive root modulo p and modulo q.

(a) Explain briefly why discrete logarithms modulo p can be computed much more
rapidly than discrete logarithms modulo q (be specific about which algorithms
are involved; you do not need to describe the algorithms in detail).

Part (b) on reverse side. (2 points)



(b) Comment (2022): this problem concerns a factoring algorithm we are not dis-
cussing this semester. Let N = pq. Suppose that Eve attempts to factor N
by calling the following function (this is similar to the code provided on Problem
Set 7, except that the initial value of a is chosen to be a = 2, rather than chosen
at random, and it does not bother to check whether or not a is a unit initially).

def pollardWith2(N):

a = 2

j = 2

while fractions.gcd(a-1,N) == 1:

a = pow(a,j,N)

j += 1

return fractions.gcd(a-1,N)

What will be the return value of this function when called on N = pq? How
many times will the while loop iterate before returning this value?

(4 points)



(4) (a) Prove that if p is a prime number, and a is an integer such that a2 ≡ 1 (mod p),
then either a ≡ 1 (mod p) or a ≡ −1 mod p.

Part (b) on reverse side. (3 points)



(b) Suppose that p is a prime number, p− 1 = 2kq for q an odd integer, and a is an
integer with 1 ≤ a ≤ N − 1. Deduce from part (a) that either aq ≡ 1 (mod p)

or one of the numbers aq, a2q, a4q, · · · , a2
k−1q is congruent to −1 modulo p.

(3 points)



(5) Suppose that p, g are public parameters for Elgamal signatures (you may assume that
g is a primitive root modulo p), and that Samantha’s public verification key is A.
Samantha publishes a valid signature (S1, S2) for a document D, and Eve observes
that S1 is exactly equal to g. This might occur if Samantha is not choosing her
ephemeral key sufficiently randomly.

(a) Assuming that gcd(g, p − 1) = 1, write a function extract(p,g,A,S1,S2,D)

that extracts Samantha’s private signing key a from this information. You may
assume that you have already implemented a function ext euclid(a,b), which
returns a list [u, v, g] such that g = gcd(a, b) and au + bv = g. Your code does
not need to check that S1 = g, or that gcd(g, p−1) = 1; assume that it will only
receive input meeting these conditions. Your code should be efficient enough to
finish in a matter of seconds if all the arguments are 1024 bits long or shorter.

Part (b) on reverse side. (4 points)



(b) Describe briefly how you would modify your code to work in the more general
situation where gcd(g, p− 1) is relatively small, but may not be equal to 1. You
do not need to write a second program; just clearly describe the steps that you
would take.

(2 points)



Additional space for work.



Additional space for work.



Reference information. You may detach this sheet for easier use.

Multiplication table modulo 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2 0 2 4 6 8 10 12 14 16 18 20 22 1 3 5 7 9 11 13 15 17 19 21

3 0 3 6 9 12 15 18 21 1 4 7 10 13 16 19 22 2 5 8 11 14 17 20

4 0 4 8 12 16 20 1 5 9 13 17 21 2 6 10 14 18 22 3 7 11 15 19

5 0 5 10 15 20 2 7 12 17 22 4 9 14 19 1 6 11 16 21 3 8 13 18

6 0 6 12 18 1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17

7 0 7 14 21 5 12 19 3 10 17 1 8 15 22 6 13 20 4 11 18 2 9 16

8 0 8 16 1 9 17 2 10 18 3 11 19 4 12 20 5 13 21 6 14 22 7 15

9 0 9 18 4 13 22 8 17 3 12 21 7 16 2 11 20 6 15 1 10 19 5 14

10 0 10 20 7 17 4 14 1 11 21 8 18 5 15 2 12 22 9 19 6 16 3 13

11 0 11 22 10 21 9 20 8 19 7 18 6 17 5 16 4 15 3 14 2 13 1 12

12 0 12 1 13 2 14 3 15 4 16 5 17 6 18 7 19 8 20 9 21 10 22 11

13 0 13 3 16 6 19 9 22 12 2 15 5 18 8 21 11 1 14 4 17 7 20 10

14 0 14 5 19 10 1 15 6 20 11 2 16 7 21 12 3 17 8 22 13 4 18 9

15 0 15 7 22 14 6 21 13 5 20 12 4 19 11 3 18 10 2 17 9 1 16 8

16 0 16 9 2 18 11 4 20 13 6 22 15 8 1 17 10 3 19 12 5 21 14 7

17 0 17 11 5 22 16 10 4 21 15 9 3 20 14 8 2 19 13 7 1 18 12 6

18 0 18 13 8 3 21 16 11 6 1 19 14 9 4 22 17 12 7 2 20 15 10 5

19 0 19 15 11 7 3 22 18 14 10 6 2 21 17 13 9 5 1 20 16 12 8 4

20 0 20 17 14 11 8 5 2 22 19 16 13 10 7 4 1 21 18 15 12 9 6 3

21 0 21 19 17 15 13 11 9 7 5 3 1 22 20 18 16 14 12 10 8 6 4 2

22 0 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1




